• Offered by Mathematical Sciences Institute
  • ANU College ANU Joint Colleges of Science
  • Classification Transitional
  • Course subject Mathematics
  • Areas of interest Mathematics

This course focuses on the language of mathematical arguments.  Rather than attacking advanced topics, we will use simple mathematics to develop an understanding of how results are established. We begin with clearly stated and plausible assumptions or axioms and then develop a more and more complex theory from them. The course, and the lecturer, will have succeeded if you finish the course able to construct valid arguments of your own and to criticise those that are presented to you.

Learning Outcomes

On satisfying the requirements of this course, students will have the knowledge and skills to:
1. Understand the role of rigorous proof in mathematics.
2. Be able to construct written arguments using  induction, proof by contradiction, counting arguments, and countability.
3. Develop problem-solving skills in elementary number theory, graph theory, and probability theory.
4. Present rigorous mathematical proofs orally and in writing. 

Indicative Assessment

Weekly problem sets (30%, LO 1,2,3)
Mid-semester and final exams (20% and 30%, respectively, LO 1,2,3)
Mid-semester and final exams (20%, LO 1,2,3,4)

In addition,
1. in consultation with the course lecturer, students will select a topic related to this course, and through reading of the relevant literature, acquire a fundamental knowledge of that topic.
2. Write a report on the selected topic and highlight key questions currently researched in the field.
(20%, LO 1,2,3,4)

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Workload

3 lectures and tutorial weekly

Requisite and Incompatibility

You will need to contact the Mathematical Sciences Institute to request a permission code to enrol in this course.

Prescribed Texts

Number, Symmetry and Shape by Diane Herrmann and Paul J. Sally Jr.
Introduction to Mathematical Thinking: Problem-Solving and Proof by John D'Angelo and Douglas West

Preliminary Reading

Godel, Escher, Bach by Douglas Hofstadter
Proofs and Refutations: The Logic of Mathematical Discovery by Imre Lakatos

Fees

Tuition fees are for the academic year indicated at the top of the page.  

If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Student Contribution Band:
Band 2
Unit value:
6 units

If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Domestic fee paying students
Year Fee
2016 $3480
International fee paying students
Year Fee
2016 $4638
Note: Please note that fee information is for current year only.

Offerings and Dates

The list of offerings for future years is indicative only

First Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery
4538 15 Feb 2016 26 Feb 2016 31 Mar 2016 27 May 2016 In Person

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions