Join us on an exciting journey tailored for students who are passionate about pushing the boundaries of computing technology. The Bachelor of Advanced Computing (Research and Development) (Honours) program is designed to immerse you in a dynamic learning environment where you'll not only master advanced computing concepts but also engage deeply in hands-on research and development projects. From day one, you'll dive into a blend of challenging advanced coursework that covers everything from foundational principles to cutting-edge algorithms and software engineering techniques. Classes are interactive and designed to cultivate your critical thinking and problem-solving abilities, essential skills for tackling complex real-world challenges.
What sets the Bachelor of Advanced Computing (Research and Development) (Honours) program apart is its emphasis on research. You'll have the opportunity to work closely with renowned faculty members on groundbreaking research projects. This hands-on experience isn't just about learning theory—it's about applying what you've learned to solve real problems and contribute to advancements in computing. Within your degree program, you have the flexibility to learn and explore the range of computing offerings, and you can choose to complete a Computing Major or Specialisation if you want to study an area in more depth. Beyond the classroom, the program encourages interdisciplinary exploration. You'll have the flexibility to explore connections between computing and other fields like mathematics, biology, creative arts and social sciences. This interdisciplinary approach enriches your understanding and equips you with a broader perspective and adaptable skills that are highly sought after in today's tech-driven world.
As a Bachelor of Advanced Computing (Research and Development) (Honours) student, you'll graduate with a robust skill set and a portfolio of real-world projects that showcase your expertise. Whether your goal is to develop innovative software solutions, pursue advanced research opportunities, or lead technology initiatives, the ANU Bachelor of Advanced Computing (Research and Development) (Honours) program prepares you to excel in diverse career paths within the vibrant and evolving field of computing.
We live in a world of major security problems. From large-scale wars and strategic competition between the major states, to threats to the environment, and challenges at home such as terrorism, cybersecurity and the impact of new technology. The Bachelor of International Security Studies (BINSS) explores the enduring problems of security and war through a broad lens. It provides students with the empirical knowledge and analytical skills to understand the history and causes of international conflict and the implications of security issues for Australia and the Asia-Pacific region. Students will develop the experience and communication skills to assess the nature of contemporary security problems, and drawing on the latest academic scholarship, engage with policy and civil society solutions to the security problems of our time.
The BINSS is particularly suited for those seeking careers in the Australian Government, such as working as a diplomat in Foreign Affairs and Trade, as a strategist in the Department of Defence, or as a security analyst in the Intelligence Community. Graduates will also be well placed to contribute to international organisations such as the United Nations, to Aid and Development groups, or to support the private sector as businesses and non-government organisations navigate a challenging world.
Career Options
ANU ranks among the world's very finest universities. Our nearly 100,000 alumni include political, business, government, and academic leaders around the world.
We have graduated remarkable people from every part of our continent, our region and all walks of life.
Employment Opportunities
Innovative solutions to many of the problems in society today will come from those working in R&D and are at the forefront of new product design and development as well as being a wealth and change generator. After graduation, students choose to become innovators and leaders in R&D roles in IT or other industries, government, academia, or by creating their own start-ups.
BACR&D students can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including IBM, Google, Microsoft, Intel, Atlassian, Price Waterhouse Coopers, Accenture, National Australia Bank, Deloitte, Reserve Bank of Australia and the Australian Signals Directorate.
Students graduating with AACRD have been accepted directly into PhD programs around the world including ANU.
Innovative solutions to many of the problems in society today will come from those working in R&D and are at the forefront of new product design and development as well as being a wealth and change generator. After graduation, students choose to become innovators and leaders in R&D roles in IT or other industries, government, academia, or by creating their own start-ups.
BACR&D students can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including IBM, Google, Microsoft, Intel, Atlassian, Price Waterhouse Coopers, Accenture, National Australia Bank, Deloitte, Reserve Bank of Australia and the Australian Signals Directorate.
Students graduating with AACRD have been accepted directly into PhD programs around the world including ANU.
Learning Outcomes
- Define and analyse complex problems, and design, implement and evaluate solutions that demonstrate an understanding of the systems context in which software is developed and operated including economic, social, historical, sustainability and ethical aspects
- Demonstrate an operational and theoretical understanding of the foundations of computer science including programming, algorithms, logic, architectures and data structures
- Illustrate an understanding of deep knowledge in at least one area of computer science
- Demonstrate a deep understanding of the fundamentals of research methodologies, including defining research problems, evaluating background readings, developing literature reviews, designing experiments, and effectively communicating results to a transdisciplinary audience.
- Proficiently apply research methods to the solution of contemporary research problems in computer science.
- Identify and explain the key concepts, ideas and principal actors in international security.
- Evaluate the major theoretical frameworks for understanding the complexities of contemporary security challenges.
- Demonstrate a thorough knowledge of the historical and contemporary dimensions of international, internal and transnational security, especially in the Asia-Pacific region.
- Analyse the key challenges facing Australian security and defence policy
- Reflect critically on the principal factors that determine the security policies of Australia and the major regional powers
- Develop and demonstrate teamwork, interpersonal, and communication skills
Further Information
The Bachelor of Advanced Computing (Research & Development) is a four-year program that has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project-based, research-intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program.
The BAC(R&D) is not a professionally accredited degree, while the BAC is accredited by the Australian Computer Society (ACS).
Program Transfers
Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally, students would need to transfer into the program before the end of their second year.
Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College by visiting the College of Engineering, Computing and Cybernetics website.
The Bachelor of Advanced Computing (Research & Development) is a four-year program that has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project-based, research-intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program.
The BAC(R&D) is not a professionally accredited degree, while the BAC is accredited by the Australian Computer Society (ACS).
Program Transfers
Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally, students would need to transfer into the program before the end of their second year.
Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College by visiting the College of Engineering, Computing and Cybernetics website.
Admission Requirements
- ATAR:
- 98
- International Baccalaureate:
- 42
Pathways
Bachelor of Advanced Computing (Honours) is the pathway for students who meet the Maths pre-requisites but do not have the required score for direct entry into this program.
Eligible students should enrol in the Bachelor of Advanced Computing (Honours) complete the Advanced first-year courses and if they can maintain a High Distinction average in their first year, they may be approved to transfer into the R&D program in their second year.
Prerequisites
ACT: Mathematical Methods (Major)/Further Mathematics (Major)/Specialist Mathematics/Specialist Methods (Major)
NSW: HSC Mathematics Advanced or equivalent.
VIC: Mathematics Methods or equivalent
QLD: Mathematics Methods or equivalent
TAS: Mathematical methods/Mathematics Specialised/Mathematics 1 and II through U Tas/Both Mathematics 1 and II through UTAS/Both Advanced Calculus and Applications 1A and 1B through UTAS
SA / NT: Mathematical Methods or equivalent
WA: Mathematical Methods or equivalent
IB: Mathematics: Applications and Interpretations HL/Mathematics: Analysis and Approaches SL or HL
Adjustment Factors
Adjustment factors are combined with an applicant's secondary education results to determine their Selection Rank. ANU offers adjustment factors based on equity, diversity, and/or performance principles, such as for recognition of difficult circumstances that students face in their studies.
To be eligible for adjustment factors, you must have:
- achieved a Selection Rank of 70 or more before adjustment factors are applied
- if you have undertaken higher education, completed less than one year full-time equivalent (1.0 FTE) of a higher education program
- applied for an eligible ANU bachelor degree program
Please visit the ANU Adjustment Factors website for further information.
Indicative fees
Bachelor of Advanced Computing (Research and Development) (Honours) - Commonwealth Supported Place (CSP)
Bachelor of International Security Studies - Commonwealth Supported Place (CSP)
For more information see: http://www.anu.edu.au/students/program-administration/costs-fees
- Annual indicative fee for international students
- $53,700.00
Scholarships
ANU offers a wide range of scholarships to students to assist with the cost of their studies.
Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are. Specific scholarship application process information is included in the relevant scholarship listing.
For further information see the Scholarships website.
Program Requirements
The Bachelor of Advanced Computing (Research and Development) (Honours) flexible double degree component requires completion of 144 units, of which:
A maximum of 48 units may come from completion of 1000-level courses
The 144 units must include:
78 units from completion of compulsory courses from the following list:
COMP1130 Programming as Problem Solving (Advanced) (6 units)
COMP1140 Structured Programming (Advanced) (6 units)
COMP1600 Foundations of Computing (6 units)
COMP2100 Software Construction (6 units)
COMP2300 Computer Architecture (6 units)
COMP2550 Computing R&D Methods (6 units)
COMP3600 Algorithms (6 units)
COMP3770 Individual Research Project which must be completed twice, in consecutive semesters (6+6 units)
COMP4550 Computing Research Project which must be completed twice, in consecutive semesters (12+12 units).
18 units from completion of courses from the following list:
MATH1005 Discrete Mathematical Models (6 units)
MATH1013 Mathematics and Applications 1 (6 units)
MATH1014 Mathematics and Applications 2 (6 units)
MATH1115 Advanced Mathematics and Applications 1 (6 units)
MATH1116 Advanced Mathematics and Applications 2 (6 units)
MATH2222 Introduction to Mathematical Thinking: Problem-Solving and Proofs (6 units)
STAT1003 Statistical Techniques (6 units)
STAT1008 Quantitative Research Methods (6 units)
24 units from the completion of 4000-level courses from the subject area COMP Computer Science
12 units of Transdisciplinary Problem-Solving tagged courses
12 units from completion of elective courses offered by ANU, which may include courses in the subject area COMP Computer Science
After the first four periods of enrolment students must achieve a minimum 75% Weighted Average Mark in Computing courses. Students who do not achieve a minimum 75% Weighted Average Mark will be transferred to the Bachelor of Advanced Computing (Honours).
To continue into the final year of the program students must have completed 144 units and achieved a minimum 80% Weighted Average Mark calculated from the courses that contribute to the final Honours grade calculation. Students who do not achieve this 80% Weighted Average Mark will be automatically transferred to the Bachelor of Advanced Computing (Honours) degree.
To graduate with the Bachelor of Advanced Computing (Research and Development) (Honours) students must achieve a minimum 80% final Honours mark. Students who do not achieve a minimum 80% final Honours mark will be transferred to the Bachelor of Advanced Computing (Honours) degree program prior to graduating.
Honours Calculation
COMP4801 Final Honours Grade will be used to record the Class of Honours and the Mark. The Honours Mark will be a weighted average percentage mark (APM) calculated by first calculating the average mark for 1000, 2000, 3000 and 4000 level courses. We denote these averages: A1, A2, A3, and A4 respectively. The averages are calculated based on all courses completed (including fails), that are listed in the program requirements, excluding non-COMP-coded electives, giving NCN and WN a nominal mark of zero. Finally, these averages are combined using the formula APM = (0.1 X A1) + (0.2 X A2) + (0.3 X A3) + (0.4 X A4).
The APM will then be used to determine the final grade according to the ANU Honours grading scale, found at http://www.anu.edu.au/students/program-administration/assessments-exams/grading-scale.
The Bachelor of International Security Studies flexible double degree component requires completion of 96 units, of which:
A maximum of 36 units may come from completion of 1000-level courses
A minimum of 18 units must come from completion of 3000-level courses
The 96 units must consist of:
The 144 units must consist of:
36 units from completion of the following compulsory courses:
STST1001 Introduction to International Security
STST1004 How Nations Fight: From Tsushima to Taiwan
STST2001 Security Concepts in the Asia-Pacific
STST2005 Why Nations Fight: The Causes of International Conflict
STST3002 Living with Giants: Australia's Security in a Contested Asia
STST3005 International Security in the 21st Century
A maximum of 12 units from completion of the following courses:
ASIA3088 The Korean War
STST2003 Australia and Security in the Pacific Islands
STST3003 Honeypots and Overcoats: Australian Intelligence in the World
Minimum of 6 units from completion of a course from the following concepts and methods course list:
HIST2110 Approaches to History
POLS2044 Contemporary Political Analysis
POLS3001 Foreign Policy Analysis
POLS3125 Game Theory and Social Sciences
SOCY2043 Introduction to Qualitative Research Methods
SOCY2038 Introduction to Quantitative Research methods
A minimum of 30 units from the completion of courses within one or more of the following Security, Language, and Area Studies majors and minors:
Languages
Arabic Language
Burmese Language
Chinese Language
French Studies
German Studies
Hindi Language
Indonesian Language
Italian Studies
Japanese Language
Korean Language
Mongolian Language
Persian
Russian Studies
Sanskrit Language
Spanish Studies
Tetum Language
Thai Language
Tibetan Language
Tok Pisin Language
Vietnamese Language
Regions
Asian History
Asian Studies
Contemporary Europe
Chinese Studies
Indian and South Asian Studies
Indonesian Studies
Middle Eastern and Central Asian Studies
Middle East Politics and Security
Russian and Central Asia Studies
Northeast Asian Studies
Pacific Studies
Southeast Asian Studies
Issues
Ancient History
Climate Science and Policy
Criminology
Geography
Gender and Sexuality
History
Historical International Security
International Relations
Peace and Conflict Studies
Philosophy
Political Science
Psychology
Social Research methods
Sociology
Sustainable Development
Technology, Networks and Society
A minimum of 12 units of courses tagged as Transdisciplinary Problem-Solving
A maximum of 12 units of internships courses:
ANIP3003 Australian National Internship Program Internship A
ASIA2110 International Affairs Internship
ASIA3023 Asia Pacific Week Internship
36 units from completion of the following compulsory course list:
STST1001 Introduction to International Security
STST1004 How Nations Fight: From Tsushima to Taiwan
STST2001 Security Concepts in the Asia-Pacific
STST2005 Why Nations Fight: The Causes of International Conflict
STST3002 Living with Giants: Australia's Security in a Contested Asia
STST3005 International Security in the 21st Century
A maximum of 12 units from completion of the following courses
ASIA3088 The Korean War
STST2003 Australia and Security in the Pacific Islands
STST3003 Honeypots and Overcoats: Australian Intelligence in the World’
A minimum of 6 units from completion of a course from the following concepts and methods course list:
HIST2110 Approaches to History
POLS2044 Contemporary Political Analysis
POLS2125 Game Theory and Social Sciences
POLS3001 Foreign Policy Analysis
SOCY2043 Introduction to Qualitative Research Methods
SOCY2038 Introduction to Quantitative Research methods
A minimum of 30 units from the completion of courses within one or more of the following Security, Language, and Area Studies majors and minors.
Languages
Arabic Language
Burmese Language
Chinese Language
French Studies
German Studies
Hindi Language
Indonesian Language
Italian Studies
Japanese Language
Korean Language
Mongolian Language
Persian
Russian Studies
Sanskrit Language
Spanish Studies
Tetum Language
Thai Language
Tibetan Language
Tok Pisin Language
Vietnamese Language
Regions
Asian History
Asian Studies
Contemporary Europe
Chinese Studies
Indian and South Asian Studies
Indonesian Studies
Middle Eastern and Central Asian Studies
Middle East Politics and Security
Russian and Central Asia Studies
Northeast Asian Studies
Pacific Studies
Southeast Asian Studies
Issues
Ancient History
Climate Science and Policy
Criminology
Geography
Gender and Sexuality
History
Historical International Security
International Relations
Peace and Conflict Studies
Philosophy
Political Science
Psychology
Social Research methods
Sociology
Sustainable Development
Technology, Networks and Society
A minimum of 12 units of courses tagged as Transdisciplinary Problem-Solving
A maximum of 12 units of internships courses:
ANIP3003 Australian National Internship Program Internship A
ASIA2110 International Affairs Internship
ASIA3023 Asia Pacific Week Internship
Minors
Bachelor of International Security Studies Minors
Specialisations
Bachelor of Advanced Computing (Research and Development) (Honours) Specialisations
Study Options
Year 1 | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | ||
Year 2 | COMP2100 Software Construction 6 units | COMP2550 Computing R&D Methods 6 units | COMP2300 Computer Architecture 6 units | |
COMP2120 Software Engineering 6 units | COMP2310 Systems, Networks, and Concurrency 6 units | COMP2560 | ||
Year 3 | COMP2420 | Computing Research Specialisation 6 units | ||
COMP3600 Algorithms 6 units | Computing Research Specialisation 6 units | |||
Year 4 | COMP3770 Computing Research Project (R&D) 6 units | Computing Research Specialisation 6 units | ||
COMP3770 Computing Research Project (R&D) 6 units | Computing Research Specialisation 6 units | |||
Year 5 | COMP4550 Computing Research Project 12 units | COMP4550 | ||
COMP4550 Computing Research Project 12 units | COMP4550 |
Back to the Bachelor of Advanced Computing (Research and Development) (Honours) page
The Bachelor of Advanced Computing (Research & Development) AACRD can be taken as a part of many double degrees. In a double degree you may not be able to complete a major in a computing discipline depending on your other degree. For help on planning your double degree follow the advice on the College Student Services Website.
Single degree
The single degree offers 60 units (ten courses) of electives that can be taken from additional computing courses enabling you to complete a Computing major, minor, or additional specialisation), or a major or minor from another College.
There are 12 units of elective courses in the degree that can be used to meet your Transdisciplinary Problem-Solving (TD) requirements with any ANU TD tagged courses (including COMP). By following your degree rules you will meet your TD program requirements.
Double degree
- The Double degree allows 12 units of electives to allow you to explore subjects across ANU.
- There are 12 units of elective courses in the degree that can be used to meet your 12 units
- Transdisciplinary Problem-Solving requirements across the Double degree. By following your degree rules you will meet your TD program requirements. ·
- You can find your double degree with BAC(R&D) from Program and Courses
About this degree
- Typically you will study 4 courses per semester (total of 24 units) as a
full time student giving you a total of 24 courses across your whole
degree.
- The degree comprises compulsory requirements, Computing electives, research and development projects, and University electives.
- You can choose to complete one, or more, of the AACOM Specialisations, BCOMP majors or HCCC Minor using your computing and University electives. Talk to the College Student Services about how to plan your degree to include any of these options after your first semester.
24-unit Specialisations:
§ Human-Centred and Creative Computing
§ Machine Learning § Systems and Architecture
§ Theoretical Computer Science
48-unit Majors
§ HCCC-MAJ Human-Centred and Creative Computing
§ INFS-MAJ Information Systems
§ INSY-MAJ Intelligent SystemsFollow the steps here: Declaring majors, minors & specialisations to declare your Specialisation and any majors you wish to take, noting the dates this can be done. You do not need to declare any majors or Specialisations until your second or third year but note that you need to plan to complete the required courses to meet their requirements.
Enrolment Status
While it is possible to enrol in fewer courses per semester, which is called studying part-time, it will take you longer to finish your program and get your degree. If you are an international student, you must always be full-time.
· You cannot study more than four courses (24 units) per semester, eight for the year without permission
Important things to keep in mind when choosing your 1000-level courses
- Students doing double degrees with business degrees do STAT1008 in place of STAT1003 and take an additional Computing elective.
- You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC(R&D) half of the double degree.
Study Options
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | University Elective |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | University Elective |
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | Other Degree course |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | Other Degree course |
Academic Advice
The Study Options below are a guide, depending on your personal circumstances and interests you may need to move Electives and courses into different semesters.
If you want to talk to someone before enrolling or have your study plan reviewed review the information on Getting Started in your Study Program and then contact the College Student Enquiries team student.css@anu.edu.au
Back to the Bachelor of International Security Studies page
When you study the Bachelor
of International Security Studies you will delve deeply into the
contemporary security threats facing nations, international organisations and
businesses around the world - including the threat of military power, civil
war, terrorism, cybercrime, environmental degradation and food security to name
just a few. Read more about this degree on our website.
Enrolment Status
It is possible to enrol in fewer courses per semester, but it
will take you longer to finish your program and get your degree. If you are an
international student you must always be enrolled full-time in 24 units each
semester.
Remember you will need to enrol in courses for both First Semester and Second
Semester. You will be able to change your enrolment in courses up until
the end of week 2 of each semester without penalty. Other things to be aware of:
A course can only be counted towards one major or minor.
You can’t study more than 4 courses (24 units) per semester.
You may need to enrol in courses for your major and/or your minor, particularly if you are completing a double degree.
If you are intending to enrol in language courses and have previous experience with the language you wish to study, you need to sit a placement test to ensure you are enrolled at the most appropriate level of language study. Further information is available here.
Important things to keep in mind when choosing your 1000-level courses
When you enrol for the first time you will study ‘1000-level’ courses. These courses have ‘1’ as the first number in their course code, such as ASIA1234.
Majors and Minors
See available majors and minors for this program
Electives
You can use your electives to enrol in any courses that you
like, provided you meet prerequisite requirements.
To find 1000-level courses, search
Programs and Courses.
Remember, though, that if you are a single-degree student you cannot count more than 60 units of 1000-level courses towards the completion of your degree. If you are a double-degree student, you cannot count more than 36 units of 1000-level courses towards the completion of the 96 units allocated to the BINSS half of your degree.
Study Options
Single Degree example
This is an example only - you need to plan your degree carefully to ensure that you are on track to fulfil the requirements of the BINSS program orders. You may, for example, wish to leave a substantial number (24) of elective units free so that you can study overseas for a semester.Study Options
Year 1 48 units | STST1001 Introduction to International Security Studies 6 units | 1000-level course from the Security, Language and Area Studies majors and minors list | Elective course | Elective course |
STST1004 How Nations Fight: From Tsushima to Taiwan 6 units | 1000-level course from the Security, Language and Area Studies majors and minors list | Elective course | Elective course |
Double Degree example
This is an example only - you need to plan your degree carefully to ensure that you are on track to fulfil the requirements of both degrees.Study Options
Year 1 48 units | STST1001 Introduction to International Security Studies 6 units | 1000-level course from the Security, Language and Area Studies majors and minors list | Course from second degree | Course from second degree |
STST1004 How Nations Fight: From Tsushima to Taiwan 6 units | 1000-level course from the Security, Language and Area Studies majors and minors list | Course from second degree | Course from second degree |