• Class Number 4234
  • Term Code 3430
  • Class Info
  • Unit Value 6 units
  • Mode of Delivery In Person
  • COURSE CONVENER
    • AsPr Fiona Beck
  • LECTURER
    • AsPr Fiona Beck
  • Class Dates
  • Class Start Date 19/02/2024
  • Class End Date 24/05/2024
  • Census Date 05/04/2024
  • Last Date to Enrol 26/02/2024
SELT Survey Results

Discovering Engineering is the foundation course for engineering. The course invites students to discover engineering by tackling an open-ended design project, as well as learning a variety of essential technical and non-technical skills. The major project for the course is to work in teams to design and build a robot rover that can autonomously navigate around a maze.

Throughout the course, students undertake a variety of learning activities that introduce the key engineering concepts that are needed to successfully complete the project. Students learn about the engineering design process, including understanding what is needed in a project, generating concepts, prototyping, analysing, and implementing a solution. Students work in teams, allowing them to develop their collaboration and communication skills, as well as their project management skills. This is complemented by learning about the importance of reflective and ethical professional practice. At the same time students will also learn about basic electronics, coding and problem solving, providing a range of fundamental skills needed by a modern engineer.

 

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

  1. Demonstrate research into engineering concepts, technology and contexts.
  2. Select and use appropriate engineering tools to model and analyse engineering components.
  3. Design a solution to an open-ended problem using an engineering process.
  4. Identify responsibilities within an engineering team in relation to professional practice.
  5. Communicate engineering concepts and solutions effectively using different media to professional and other audiences.
  6. Demonstrate self-reflection and evaluation of ideas

Research-Led Teaching

The ANU invests in transformative research with the goal of finding solutions for some of the world's biggest and most important problems, through a variety of research initiatives, including ANU Grand Challenges Scheme. While these types of problems draw on expertise across the disciplines at ANU, the engineering design process necessarily plays a central role in such projects. Dr Beck is the Convenor of the transdisciplinary Hydrogen Fuels project, part of the ANU’s Zero Carbon Energy for the Asia Pacific Grand Challenge. She integrates learnings from this project into her teaching of Discovering Engineering, including how to foster creative teamwork, novel approaches to problem solving, and how to communicate to a wide range of stakeholders. 

Examination Material or equipment

There is no exam for this course.


Whether you are on campus or studying remotely, there are a variety of online platforms you will use to participate in your study program. These could include videos for lectures and other instruction, two-way video conferencing for interactive learning, email and other messaging tools for communication, interactive web apps for formative and collaborative activities, print and/or photo/scan for handwritten work and drawings, and home-based assessment.

ANU outlines recommended student system requirements to ensure you are able to participate fully in your learning. Other information is also available about the various Learning Platforms you may use.

It is recommended that you attend an induction for the ANU/Engineering MakerSpace to access these facilities for your project work.

Labs and project work in this course use an Arduino Uno microcontroller and the open-source Arduino Software (IDE). Hardware and electronics for the course will be supplied. The software can be downloaded from: https://www.arduino.cc/en/software

Computers will require a USB connection to work with an Arduino Uno microcontroller.

Staff Feedback

Students will be given feedback in the following forms in this course:

  • written comments
  • verbal comments
  • feedback to whole class, groups, individuals, focus group etc

Student Feedback

ANU is committed to the demonstration of educational excellence and regularly seeks feedback from students. Students are encouraged to offer feedback directly to their Course Convener or through their College and Course representatives (if applicable). Feedback can also be provided to Course Conveners and teachers via the Student Experience of Learning & Teaching (SELT) feedback program. SELT surveys are confidential and also provide the Colleges and ANU Executive with opportunities to recognise excellent teaching, and opportunities for improvement.

Class Schedule

Week/Session Summary of Activities Assessment
1 Lecture 1A: Introduction to courseLecture 1B: Solving open ended and ill defined problems Entry surveyQuiz #1
2 Lecture 2A: ANUSEP: Where to start tackling a problemLecture 2B: Intro to electronics and programming with ArduinoElectronics/Arduino lab 0: Introduction - blink Quiz #2Rover project documentation released
3 Lecture 3A: ANUSEP: Generating ideasLecture 3B: Communication and project managementWorkshop: Ready, steady, rover! Getting started on the rover project Quiz #3
4 Lecture 4A: Public holiday - no lectureLecture 4B: Programming 1Electronics/Arduino lab 1: H-bridge and motor control Quiz #4Milestone 1: Team charter 1%Lab quiz #1 5% - opensDesign Report 10%
5 Lecture 5A: ANUSEP: Testing your ideasLecture 5B: Programming 2Electronics/Arduino lab 2: Programming for input and output, debugging Quiz #5Lab quiz #2 5% - opens (closes two week later)
6 Lecture 6A: ANUSEP: Preliminary designLecture 6B: Teamwork and creativityRover drop-in: Rover concept Quiz #6Lab quiz #1 5% - closesMilestone 2: Conceptual design 2%Team member contribution (TMC) 1 - opens
7 Lecture 7A: ANUSEP: Preliminary design and project managementLecture 7B: Programming 3 Computer Lab 3: Sonar Quiz #7Lab quiz #3 5% - opensTMC1 - closes
8 Lecture 8A: ANUSEP: Understanding sources of error and how to design around itLecture 8B: Public holiday - no lectureWorkshop: Rover -in-motion. Demonstrating and initial testing of your rover  Quiz #8Milestone 3: Rover-in-motion 2%
9 Lecture 9A: ANUSEP: Communicating your designLecture 9B: Ethics in EngineeringRover drop-in: Rover validation and testing plan Quiz #9Lab quiz #3 5% - closesMilestone 4: Detailed design and testing plan 1%
10 Lecture 10A: Reflection in EngineeringLecture 10B: Guest LectureRover drop-in: rover testing Quiz #10
11 Lecture 11A: Opportunities and Graduate AttributesLecture 11B: ANUSEP: doing a better job next timeWorkshop: Final Rover Testing Quiz #11Rover testing 10%
12 Lecture 12A: No lectureLecture 12B: No lecture - Drop-in session for rover report Quiz #12Rover design report 25%TMC 2 - opens
13 Reflection 25%TMC 2 - closes

Tutorial Registration

Students will register for two 2-hour workshops each week via MyTimetable. Workshops and computer labs will both take place during this time-slot.

Assessment Summary

Assessment task Value Due Date Return of assessment Learning Outcomes
Weekly quizzes 10 % * * 1,2
Design report 10 % 15/03/2024 29/03/2024 1,3,5,6
Lab quizzes 15 % * * 2,5
Rover milestones 5 % * * 2,3,4,5
Rover testing 10 % * * 2,3,4,5
Rover design report 25 % 24/05/2024 07/06/2024 1,2,3,4,5
Reflection 25 % * * 1,5,6

* If the Due Date and Return of Assessment date are blank, see the Assessment Tab for specific Assessment Task details

Policies

ANU has educational policies, procedures and guidelines , which are designed to ensure that staff and students are aware of the University’s academic standards, and implement them. Students are expected to have read the Academic Integrity Rule before the commencement of their course. Other key policies and guidelines include:

Assessment Requirements

The ANU is using Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. For additional information regarding Turnitin please visit the Academic Skills website. In rare cases where online submission using Turnitin software is not technically possible; or where not using Turnitin software has been justified by the Course Convener and approved by the Associate Dean (Education) on the basis of the teaching model being employed; students shall submit assessment online via ‘Wattle’ outside of Turnitin, or failing that in hard copy, or through a combination of submission methods as approved by the Associate Dean (Education). The submission method is detailed below.

Moderation of Assessment

Marks that are allocated during Semester are to be considered provisional until formalised by the College examiners meeting at the end of each Semester. If appropriate, some moderation of marks might be applied prior to final results being released.

Examination(s)

There is no exam for this course.

Assessment Task 1

Value: 10 %
Learning Outcomes: 1,2

Weekly quizzes

The weekly quiz will be due by the close of business every Friday. Each will be worth 1% with the best 10 grades counting towards the course total. Students will have two attempts at each quiz. Questions will cover material from the lectorials, workshops, and laboratories.

Value: 10% (best 10 of 12)

Format: Multiple choice on-line quiz in Wattle, two attempts on each

Participation: Individual

Late submission of weekly quizzes will not be accepted.

Assessment Task 2

Value: 10 %
Due Date: 15/03/2024
Return of Assessment: 29/03/2024
Learning Outcomes: 1,3,5,6

Design report

This individual report will develop your ability to research a topic in an engineering context and evaluate the information relevant to the issue. It will also develop skills in scoping a design problem, determining design requirements for the solution. You communicate your findings to a general technical audience. You should communicate your findings in a manner that shows you have taken information from more than one source, filtered, combined, and evaluated that information to form logical conclusions. 

Please see the assignment sheet in Wattle for further information on the design topic and the marking rubric.

Value: 10%

Format: Written report of 5-8 pages

Participation: individual

Assessment Task 3

Value: 15 %
Learning Outcomes: 2,5

Lab quizzes

The lab quizzes will assess a students understanding of the material taught in the computer laboratories and how the labs link to the rover project. Quizzes will open following the completion of the associated computer laboratory. The quiz will be available for two weeks. Students will have one attempt at each quiz and the quiz will have a time limit of two hours.

Value: 15% (3 x 5%). Quizzes will open following the week 4, 4 and 7 computer laboratories and close 2 weeks later.

Format: Multiple choice and short answer on-line quiz in Wattle

Participation: Individual

Late submission of lab quizzes will not be accepted.

Assessment Task 4

Value: 5 %
Learning Outcomes: 2,3,4,5

Rover milestones

The rover milestones are small deliverable that are spaced through the semester to help students achieve the goals of the main project of the course, to build an autonomous maze solving robot. They support teams to complete the project over a ten week timeframe whilst providing regular feedback from the teaching team.

Milestone 1: Team charter - exercise completed during week 3 workshops and due 10 am Monday week 4 (1%)

Milestone 2: Conceptual design - report due 10 am Monday week 6 (1%)

Milestone 3: Rover-in-motion - report due 10 am Monday week 8 and demonstration during week 8 workshops (2%)

Milestone 4: Detailed design and testing plan - report due 10 am Monday week 9 (1%)

Value: 5% (3 x 1%, 1 x 2%)

Format: Short written report or in-class demonstration

Participation: Group

Feedback: verbal feedback during drop-in workshops

Late submissions of milestone will not be accepted.

Assessment Task 5

Value: 10 %
Learning Outcomes: 2,3,4,5

Rover testing

Rover testing determines if the teams design can achieve the goals of the rover project. Testing is broken down into a series of functions that are required to autonomously navigate a maze.

For further information on rover testing please see the Rover project over view on Wattle.

Value: 10%

Format: In-class demonstration from week 8, final testing in week 11

Participation: Group

Assessment Task 6

Value: 25 %
Due Date: 24/05/2024
Return of Assessment: 07/06/2024
Learning Outcomes: 1,2,3,4,5

Rover design report

 The purpose of this report is to document the final design solution for the Rover. It will communicate your solution to audiences outside your group with detail that would allow the reader to understand the reasons for your design choice and enable them to build a rover to your teams design. The report will include the design requirements or specification of the rover including the rationale behind critical design decisions. It will document the design of the rover structure, electronics and logic for operation including ?a summary of the circuit simulation for the rover design. The report will document the testing and validation of the design including design changes made?because of?testing and validation and an evaluation of the final design.

Please see the assignment sheet in Wattle for further information on report and the marking rubric.

Value: 25%

Format: Written report of 10 pages

Participation: Group

Assessment Task 7

Value: 25 %
Learning Outcomes: 1,5,6

Reflection

Engineers use reflection to critically assess the process and outcomes throughout a project. It can help to analyse lessons learnt; what worked well, what did not, and how it could be improved next time. Reflection builds on, and is an application of, critical thinking. In addition, self-assessment is an important part of developing as an engineer. In this assignment students will reflect on three different aspects of the course:

  1. The rover project;
  2. Your learning experience and how it related to the Engineers Australia competencies
  3. Ethics in engineering

Please see the assignment sheet in Wattle for further information on the reflection and the marking rubric.

Value: 25%

Format: Written reflection, 5 pages

Participation: Individual

Due date: The reflection will be submitted during the exam period.

Academic Integrity

Academic integrity is a core part of the ANU culture as a community of scholars. The University’s students are an integral part of that community. The academic integrity principle commits all students to engage in academic work in ways that are consistent with, and actively support, academic integrity, and to uphold this commitment by behaving honestly, responsibly and ethically, and with respect and fairness, in scholarly practice.


The University expects all staff and students to be familiar with the academic integrity principle, the Academic Integrity Rule 2021, the Policy: Student Academic Integrity and Procedure: Student Academic Integrity, and to uphold high standards of academic integrity to ensure the quality and value of our qualifications.


The Academic Integrity Rule 2021 is a legal document that the University uses to promote academic integrity, and manage breaches of the academic integrity principle. The Policy and Procedure support the Rule by outlining overarching principles, responsibilities and processes. The Academic Integrity Rule 2021 commences on 1 December 2021 and applies to courses commencing on or after that date, as well as to research conduct occurring on or after that date. Prior to this, the Academic Misconduct Rule 2015 applies.

 

The University commits to assisting all students to understand how to engage in academic work in ways that are consistent with, and actively support academic integrity. All coursework students must complete the online Academic Integrity Module (Epigeum), and Higher Degree Research (HDR) students are required to complete research integrity training. The Academic Integrity website provides information about services available to assist students with their assignments, examinations and other learning activities, as well as understanding and upholding academic integrity.

Online Submission

You will be required to electronically sign a declaration as part of the submission of your assignment. Please keep a copy of the assignment for your records. Unless an exemption has been approved by the Associate Dean (Education) submission must be through Turnitin.

Hardcopy Submission

For some forms of assessment (hand written assignments, art works, laboratory notes, etc.) hard copy submission is appropriate when approved by the Associate Dean (Education). Hard copy submissions must utilise the Assignment Cover Sheet. Please keep a copy of tasks completed for your records.

Late Submission

Individual assessment tasks may or may not allow for late submission. Policy regarding late submission is detailed below:

  • Late submission not permitted. If submission of assessment tasks without an extension after the due date is not permitted, a mark of 0 will be awarded. Late submissions will not be accepted on quizzes or rover milestone.
  • Late submission permitted. Late submission of assessment tasks without an extension are penalised at the rate of 5% of the possible marks available per working day or part thereof. Late submission of assessment tasks is not accepted after 10 working days after the due date, or on or after the date specified in the course outline for the return of the assessment item. Late submission is not accepted for take-home examinations.

Referencing Requirements

The Academic Skills website has information to assist you with your writing and assessments. The website includes information about Academic Integrity including referencing requirements for different disciplines. There is also information on Plagiarism and different ways to use source material.

Returning Assignments

Assignments - Feedback and grades for all assignments will be available via the Wattle gradebook.

Rover milestones - verbal feedback will be provided by your tutor during drop-in workshops. Grades for milestones will be recorded in the gradebook within 10 working days after submission.

Final assessment - Marks for the assignment will not be released separately (as occurs for final exams). Feedback will be available at the end of the exam period via the Wattle gradebook.

Extensions and Penalties

Extensions and late submission of assessment pieces are covered by the Student Assessment (Coursework) Policy and Procedure. Extensions may be granted for assessment pieces that are not examinations or take-home examinations. If you need an extension, you must request an extension in writing on or before the due date. If you have documented and appropriate medical evidence that demonstrates you were not able to request an extension on or before the due date, you may be able to request it after the due date.

Privacy Notice

The ANU has made a number of third party, online, databases available for students to use. Use of each online database is conditional on student end users first agreeing to the database licensor’s terms of service and/or privacy policy. Students should read these carefully. In some cases student end users will be required to register an account with the database licensor and submit personal information, including their: first name; last name; ANU email address; and other information.
In cases where student end users are asked to submit ‘content’ to a database, such as an assignment or short answers, the database licensor may only use the student’s ‘content’ in accordance with the terms of service – including any (copyright) licence the student grants to the database licensor. Any personal information or content a student submits may be stored by the licensor, potentially offshore, and will be used to process the database service in accordance with the licensors terms of service and/or privacy policy.
If any student chooses not to agree to the database licensor’s terms of service or privacy policy, the student will not be able to access and use the database. In these circumstances students should contact their lecturer to enquire about alternative arrangements that are available.

Distribution of grades policy

Academic Quality Assurance Committee monitors the performance of students, including attrition, further study and employment rates and grade distribution, and College reports on quality assurance processes for assessment activities, including alignment with national and international disciplinary and interdisciplinary standards, as well as qualification type learning outcomes.

Since first semester 1994, ANU uses a grading scale for all courses. This grading scale is used by all academic areas of the University.

Support for students

The University offers students support through several different services. You may contact the services listed below directly or seek advice from your Course Convener, Student Administrators, or your College and Course representatives (if applicable).

AsPr Fiona Beck
fiona.beck@anu.edu.au

Research Interests


I am an applied physicist whose research is focused on advancing the clean energy transition. I lead a research group working to integrate optoelectronics and nanophotonics to develop novel renewable energy technologies. I am also the Convenor of the Hydrogen Fuels project for ZCEAP - Zero-Carbon Energy for the Asia-Pacific, ANU Energy Change Institute Grand Challenge, working with a transdisciplinary team from across ANU to help transform Australia into a leading exporter of renewable fuels in our region.
My research spans the boundary between nano-scale optics and photoelectrochemical/optoelectronic device design: harnessing an improved understanding of light-matter interactions to investigate new ways to convert light to other forms of energy. My research group brings together expertise in numerical simulations, device design and fabrication, and advanced characterisation to demonstrate proof-of-concept devices with the potential to impact a range of applications; including renewable fuels such as hydrogen. For more info on what I do, and why, see:http://energy.anu.edu.au/news-events/hydrogen-can-transition-australia-zero-carbon-energy-export-superpowerreporter.anu.edu.au/inspiring-energy

AsPr Fiona Beck

By Appointment
Sunday
AsPr Fiona Beck
fiona.beck@anu.edu.au

Research Interests


AsPr Fiona Beck

By Appointment
Sunday

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions