• Offered by Research School of Chemistry
  • ANU College ANU Joint Colleges of Science
  • Course subject Chemistry
  • Areas of interest Chemistry
  • Academic career UGRD
  • Course convener
    • Dr Mark Ellison
  • Mode of delivery In Person
  • Offered in First Semester 2014
    See Future Offerings

The following syllabus provides a general guide to the topics to be discussed:

Atomic structure and bonding: electronic structure of atoms, quantum numbers, orbitals and energy levels, filling sequence, periodicity of atomic properties, octet ‘rule’, chemical bonds - ionic, covalent - energetics, H-bonds, Lewis structures, shapes of molecules, VSEPR theory, valence bond theory, hybridisation, resonance, molecular orbital theory of simple homonuclear diatomic molecules.

Equilibrium: Haber process as example of the Law of mass action, equilibrium constants, Kc and Kp, Le Chatelier’s principle, reaction quotient, endo- and exo-thermic reactions.

Acids/bases and aqueous equilibria: classical, Lowry-Brønsted, and Lewis definitions, pH of aqueous solutions, strengths of acids and bases - Ka and Kb, titration curves, buffers, extent of hydrolysis - weak acids/bases, solubility products.

Introductory thermodynamics: Energy - different forms, kinetic and potential, heat and work, the First Law of Thermodynamics, conservation of energy, internal energy and enthalpy, Hess’ Law, state functions, standard states, calorimetry.

Electrochemistry: redox reactions, half-cell reactions and balancing equations, oxidation states, Voltaic cells, electrodes, electrode potentials, electromotive force and the free energy of cell reactions, Nernst equation.

Advanced thermodynamics: entropy, Second and Third Laws of Thermodynamics, free energy, equilibrium, spontaneous processes, equilibrium constants - calculations, extent of reaction.

Organic structure, isomerism & reactivity: carbon hybridization, functional groups, nomenclature, 3D chemistry, conformations, isomerism, biological and synthetic polymers – for example, polyamides and polysaccharides.

Laboratory: Exercises illustrating the simpler principles of analytical, inorganic, organic and physical chemistry. The apparatus used in the course is supplied by the Research School of Chemistry. Attendance at laboratory classes is compulsory.

Honours Pathway Option (HPO)

Replacement of 12 tutorials with 12 additional lectures at a more advanced level. The HPO is designed for students with a strong interest in chemistry from school, Science Summer School, Olympiad or equivalent. It is expected that all students in the PhB, or Honours degree programs enrolled in CHEM1101 will complete the HPO.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

On satisfying the requirements of this course, students will have the knowledge and skills to:

 

  • Demonstrate an understanding of the electronic structure of an atom and the concept of chemical bonding and be able to interpret the relationships between them. (LO1)
  • Demonstrate an understanding of the laws of thermodynamics, heat changes in reactions and entropy.  Be able to explain whether a reaction is spontaneous. (LO2)
  •  Demonstrate an understanding of chemical equilibria, acids and bases and the processes occurring in solution.  Be able to perform quantitative calculations. (LO3)
  • Be able to interpret a developed thin layer chromatogram. (LO4)
  • Be able to demonstrate an insight and understanding into the bonding and structure of a variety of simple organic molecules, including isomerism and stereochemistry. (LO5)
  • Be able to demonstrate the use of chemical nomenclature and the knowledge of the classification, properties and reactions of a wide variety of organic compounds according to the functional groups they contain. (LO6)
  • Recognise the importance of chemistry in the biological sciences and society at large . Be able to apply chemical concepts to the understanding of biological structures and processes. (LO7)
  • Demonstrate the ability to perform safe laboratory manipulations and to manipulate glassware.  Be able to perform volumetric analysis and chemical synthesis following a prescribed procedure. (LO8)

Other Information

Secondary School Prerequisite:

A ACT major in Chemistry or NSW HSC Chemistry, or equivalent,  or successful completion of a bridging course in Chemistry is required.   Chemistry is essential for all later-year courses in chemistry, the biological streams of biochemistry and cell biology, microbiology and immunology, molecular genetics, animal and human physiology, botany and some parts of neuroscience. A bridging course is available in February through the Research School of Chemistry.

Indicative Assessment

25% by laboratory work, 6% by online quizzes and 69% by exam.

HPO Proposed Assessment: The standard course will count 90% towards the final grade and the Honours Pathway Option 10%.

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Workload

A maximum of 48 hours of lectures/tutorials and 27 hours of laboratory classes.

Prescribed Texts

Chemistry Cubed:Introducing Inorganic, Organic and Physical Chemistry by Burrows, Parson and Price

Majors

Minors

Fees

Tuition fees are for the academic year indicated at the top of the page.  

If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Students continuing in their current program of study will have their tuition fees indexed annually from the year in which you commenced your program. Further information for domestic and international students about tuition and other fees can be found at Fees.

Student Contribution Band:
2
Unit value:
6 units

If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Domestic fee paying students
Year Fee Description
1994-2003 $1650
2014 $2946
2013 $2946
2012 $2946
2011 $2946
2010 $2916
2009 $2916
2008 $2916
2007 $2520
2006 $2520
2005 $2298
2004 $1926
International fee paying students
Year Fee
1994-2003 $3390
2014 $3762
2013 $3756
2012 $3756
2011 $3756
2010 $3750
2009 $3618
2008 $3618
2007 $3618
2006 $3618
2005 $3450
2004 $3450
Note: Please note that fee information is for current year only.

Offerings, Dates and Class Summary Links

ANU utilises MyTimetable to enable students to view the timetable for their enrolled courses, browse, then self-allocate to small teaching activities / tutorials so they can better plan their time. Find out more on the Timetable webpage.

The list of offerings for future years is indicative only.
Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.

First Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery Class Summary
3315 17 Feb 2014 07 Mar 2014 31 Mar 2014 30 May 2014 In Person N/A

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions