single degree

Bachelor of Advanced Computing (Honours)

A single four year undergraduate award offered by the ANU College of Engineering and Computer Science

BACMP(H)
  • Length 4 year full-time
  • Minimum 192 Units
Admission requirements
  • Field of Education
    • Information Technology
  • Length 4 year full-time
  • Minimum 192 Units
Admission requirements
  • Field of Education
    • Information Technology

Program Requirements

The Bachelor of Advanced Computing (Honours) requires completion of 192 units, of which:

A maximum of 60 units may come from completion of 1000-level courses

The 192 units must include:

54 units from completion of compulsory courses from the following list:

COMP1600 Foundations of Computing

COMP2100 Software Design Methodologies

COMP2120 Software Engineering

COMP2300 Computer Organisation and Program Execution

COMP2310 Systems, Networks and Concurrency

COMP2420 Introduction to Data Management, Analysis and Security

COMP3600 Algorithms

COMP4450 Advanced Computing Research Methods

MATH1005 Discrete Mathematical Models

 

6 units from completion of course from the following list:

COMP1100 Programming as Problem Solving

COMP1130 Programming as Problem Solving (Advanced)

 

6 units from completion of course from the following list:

COMP1110 Structured Programming

COMP1140 Structured Programming (Advanced)

 

24 units from completion of one of the following specialisations:

Intelligent Systems

Systems and Architecture

Theoretical Computer Science

 

6 units from completion of further courses from the subject area COMP Computer Science

 

6 units from completion of further 3000- and 4000-level courses from the subject area COMP Computer Science

 

Either:

12 units from completion of 3000- or 4000-level courses from the subject area COMP Computer Science

 

Or:

12 units from completion of courses from the following list:

ENGN3230 Engineering Innovation

VCUG3001 Unravelling Complexity

VCUG3002 Mobilising Research

 

Either:

6 units from completion of further courses from the subject area COMP Computer Science

 

Or:

6 units from completion of courses from the following list:

MATH1013 Mathematics and Applications 1

MATH1014 Mathematics and Applications 2

MATH1115 Advanced Mathematics and Applications 1

MATH1116 Advanced Mathematics and Applications 2

MATH2301 Games, Graphs and Machines

ENGN1211 Discovering Engineering

STAT1008 Quantitative Research Methods

STAT1003 Statistical Techniques

     

Either:

24 units from completion of COMP4550 Advanced Computing Research Project

 

Or:

12 units from completion of COMP4560 Advanced Computing Project

 

12 units from completion of further 4000-level courses from the subject area COMP Computer Science

 

48 units from completion of elective courses offered by ANU

 

COMP4801 Final Honours Grade will be used to record the Class of Honours and the Mark. The Honours Mark will be a weighted average percentage mark (APM) calculated by first calculating the average mark for 1000, 2000, 3000 and 4000 level courses. We denote these averages: A1, A2, A3, and A4 respectively. The averages are computed based on all units counted towards satisfaction of degree requirements, excluding non-COMP electives. Finally these averages are combined using the formula APM = (0.1 X A1) + (0.2 X A2) + (0.3 X A3) + (0.4 X A4).

The APM will then be used to determine the final grade according to the ANU Honours grading scale, found at http://www.anu.edu.au/students/program-administration/assessments-exams/grading-scale.

Majors

Minors

Specialisations

Elective Study

Once you have met the program requirements of your degree, you may have enough electives to complete an additional elective majorminor or specialisation.

Study Options

Year 1 48 units COMP1100 Programming as Problem Solving 6 units OR COMP1130; MATH1005 Discrete Mathematical Models 6 units Computing Elective 6 units University Elective 6 units
COMP1110 Structured Programming 6 units OR COMP1140; COMP1600 Foundations of Computing 6 units Computing Elective 6 Units University Elective 6 units
Year 2 48 units COMP2100 Software Design Methodologies 6 units COMP2300 Computer Organisation and Program Execution 6 units COMP2420 Introduction to Data Management, Analysis and Security 6 units University Elective 6 units
COMP2120 Software Engineering 6 units COMP2310 Systems, Networks and Concurrency 6 units COMP3600 Algorithms 6 units University Elective 6 units
Year 3 48 units Computing Specialisation Course 6 Units COMP4450 Advanced Computing Research Methods 6 units Computing Elective 3000 or 4000 level 6 units University Elective 6 units
Computing Specialisation Course 6 Units Computing Elective 3000 level 6 units Computing Elective 4000 level 6 units University Elective 6 units
Year 4 48 units Computing Specialisation Course 6 Units COMP4550 Advanced Computing Research Project 12 units COMP4550 University Elective 6 units
Computing Specialisation Course 6 Units COMP4450 Advanced Computing Research Methods 6 units COMP4550 University Elective 6 units

Admission Requirements

Admission to all programs is on a competitive basis. Admission to undergraduate degrees is based on meeting the ATAR requirement or an equivalent rank derived from the following qualifications:

• An Australian year 12 qualification or international equivalent; OR
• A completed Associate Diploma, Associate Degree, AQF Diploma, Diploma, AQF Advanced Diploma, Graduate Certificate or international equivalent; OR
• At least one standard full-time year (1.0 FTE) in a single program of degree level study at an Australian higher education institution or international equivalent; OR
• An approved tertiary preparation course unless subsequent study is undertaken.

Click HERE for further information about domestic admission.

More information about ATAR requirements for individual programs can be found HERE.

The National Register of higher education providers is an authoritative source of information that will help you confirm your institution of choice is registered to deliver higher education in Australia.

The Quality Indicators for Learning and Teaching (QILT) website is HERE. Based on surveys done by thousands of students across Australia you can find out about universities that interest you, doing side-by-side comparisons.

The table below is a guide to the entry level required for domestic applicants. Exact entry level will be set at time of offer.

Domestic applicant entry requirements

Queensland Band equivalents are a guide only - selection is made on an ATAR equivalent that is not available to students.

International applicant entry requirements

International applicants may view further information on admissions requirements at Entry Requirements for International Undergraduate Applicants

The University reserves the right to alter or discontinue its programs as required.

ATAR:
90
QLD Band:
6
International Baccalaureate:
33

Prerequisites

ACT: Mathematical Methods (Major)/Further Mathematics (Major)/Specialist Mathematics/Specialist Methods (Major), NSW: Mathematics or equivalent. More information about interstate subject equivalencies can be found here.

Adjustment Factors

ANU offers rank adjustments for a number of adjustment factors, including for high achievement in nationally strategic senior secondary subjects and for recognition of difficult circumstances that students face in their studies. Rank adjustments are applied to Bachelor degree applicants with an ATAR at or above 70. Points are awarded in accordance with the approved schedules, and no more than 15 points (maximum 5 subject/performance-based adjustments, maximum 10 equity-based adjustments and maximum 5 Elite Athlete adjustments) will be awarded. Subject and performance-based adjustments do not apply to programs with a minimum selection rank of 98 or higher. Visit the ANU Adjustment Factors website for further information.

Commonwealth Supported Place (CSP)

For more information see: http://www.anu.edu.au/students/program-administration/costs-fees

Annual indicative fee for international students
$42,960.00

For further information on International Tuition Fees see: https://www.anu.edu.au/students/program-administration/fees-payments/international-tuition-fees

Scholarships

ANU offers a wide range of scholarships to students to assist with the cost of their studies.

Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are.  Specific scholarship application process information is included in the relevant scholarship listing.

For further information see the Scholarships website.

This is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology revolution.

As a degree accredited by the Australian Computer Society you will not only learn advanced computing techniques and have the opportunity to complete a unique specialisation, but also develop exceptional professional skills including communication and teamwork.

While some of our students are developing code which controls unmanned aerial vehicles, others are busy writing algorithms to mine through Peta-bytes of data.  If mastering challenging projects is your thing, the ANU Bachelor of Advanced Computing (Honours) can launch you into a spectacular career.

Computing at ANU - There's more to it than you think

Career Options

Graduates from ANU have been rated as Australia's most employable graduates and among the most sought after by employers worldwide.

The latest Global Employability University Ranking, published by the Times Higher Education, rated ANU as Australia's top university for getting a job for the fourth year in a row.

Employment Opportunities

The best computing professionals often have knowledge or a wider field than computing alone. BAC graduates will be ideally positioned to shape their chosen sector of the computing industry now and into the future. They will acquire the skills and knowledge to become leaders in the ICT industry.

Opportunities exist in high tech industries, software start-ups computing research and developement as well as specialist computing organisations. Examples include, software developers, data mining specialists for insurance, banking and health sectors, human-computer interction specialists for software services industries, embedded systems developers for defence, and automotive industries.

Learning Outcomes

Upon successful completion, students will be able to:

1.     Define and analyse complex problems, and design, implement and evaluate solutions that demonstrate an understanding of the systems context in which software is developed and operated including economic, social, historical, sustainability and ethical aspects.

2.     Demonstrate an operational and theoretical understanding of the foundations of computer science including programming, algorithms, logic, architectures and data structures

3.     Recognise connections and recurring themes, including abstraction and complexity, across the discipline

4.     Adapt to new environments and technologies, and to innovate

5.     Demonstrate an understanding of deep knowledge in at least one area of computer science

6.     Communicate complex concepts effectively with diverse audiences using a range of modalities

7.     Work effectively within teams in order to achieve a common goal

8.     Demonstrate commitment to professional conduct and development that recognises the social, legal and ethical implications of their work, to work independently, and self- and peer-assess performance.

9.     Demonstrate an understanding of the fundamentals of research methodologies, including defining research problems, background reading and literature review, designing experiments, and effectively communicating results.

10.  Apply research methods to the solution of contemporary research problems in computer science.

Further Information

The computing industry has grown very rapidly in the last 40 years, with various specialized areas requiring advanced computational techniques emerging. The pervasiveness of computers and computer-enabled devices is rapidly becoming established in modern society. Humans are interacting with computers in ever more profound and sophisticated ways. Allied with this, computers are having to act more intelligently in many different contexts. As the scale and complexity of these computer systems increases, so too do challenges in their engineering. As the amount of data increases exponentially, new challenges in the mining and warehousing of information emerge. In all areas of computing, increasingly sophisticated algorithms underpin all of the resulting technologies.  The resulting hardware and software systems in these areas are complex; hence a systems engineering perspective on their design and construction is valuable.  

In these areas of computing, another emerging trend is linkages with other disciplines. Valuable perspectives on artificial intelligence are emerging from the study of natural intelligence and biological systems. Psychology is a central element in human-computer interaction. The explosion in the volume and utility of information from bioinformatics is a key driver of large-scale data systems. An engineering approach, with emphasis on both hardware and software, is needed for the design of embedded computing technology. In all cases, reliable and systematic software development remains as a key element.

The Bachelor of Advanced Computing graduate will posses technical knowledge of programming, With these as a foundation, their technical knowledge will have been honed by the study of a selection of advanced computing topics. Professional and practical skills in software development will be gained through a series of courses in software analysis, design and construction, capped off with a group software project, With professional skills developed in the areas of entrepreneurship and management, the graduate will be in a position to apply their in-depth technical knowledge to become innovators in industry.

The best computing professionals are informed by knowledge of a wider field than computing alone. Graduates fulfilling a Major in an area of advanced computing and a cognate interdisciplinary area will be ideally positioned to shape the respective sector of the computing industry as it evolves over the near future. This will also imbue a capacity for lifelong learning by exposure to a broader range of perspectives and of ways of studying.

The degree also offers a research pathway for graduates wishing to pursue careers with a high emphasis on research.

Back to the Bachelor of Advanced Computing (Honours) page

The Bachelor of Advanced Computing (Honours) (BAC) is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology revolution.

The BAC can be taken as a single degree which includes a number of core and compulsory courses including a computing specialisation. The single degree also offers 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a further computing major, minor, or specialisation), or from other university courses.

The BAC can also be taken as a part of many Flexible Double Degrees.

Single degree

  • This degree requires a total of 192 units (each course is typically 6 units though some may be 12 units or higher)
  • Typically you will study four courses per semester (total of 24 units)
  • There are a number of core and compulsory courses
  • You will need to complete a computing specialisation
  • 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a computing major, minor, or specialisation), or from other university courses.
  • You can do a maximum of 60u 1000 level courses in your single degree

Double degree

  • There are no university electives available in the Flexible Double Degree.
  • This degree requires 144 units  of the compulsory Advanced Computing requirements (each course is typically 6 units though some may be 12 units or higher)
  • Typically you will study four courses per semester (total of 24 units)
  • You will need to complete a computing specialisation
  • Typically you can do a maximum of 72u 1000 level courses in your Flexible Double Degree
  • You can find your Flexible Double Degree with the BSEng from Program and Courses

About this degree

  • The degree is made of up compulsory requirements, additional computing electives,  and 48 units (eight courses) of electives
  • In the single degree you have 48 units of university electives (eight courses).  These courses can be used to study more computing courses, or a major or minor from another area of the university including Engineering, or a selection of courses that suits your interests. 
  • In the Flexible Double Degree, you have no university electives - your other degree requirements use up all of these.

Enrolment Status

While it’s possible to enrol in fewer courses per semester, it will take you longer to finish your program and get your degree. There are maximum time limits for completion of the degree on a part-time basis. If you are an international student you must always be full-time.

Important things to keep in mind when choosing your 1000-level courses

  • When you enrol for the first time you will typically study '1000-level' courses. These courses have '1' as the first number in their course code, such as COMP1100.
  • You need to enrol in courses for both First Semester and Second Semester though note that you can change your Semester 2 courses all the way until July.
  • You can’t study more than four courses (24 units) per semester, 48u for the year, and international students cannot study less than 24u a semester expect in exceptional circumstances and with approval.
  • You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC half of the Flexible Double Degree.
  • In choosing your first year programming courses you will have a choice of doing COMP1100 or COMP1130 in Semester 1, and COMP1110 and COMP1140 in Semester 2. The standard courses are COMP1100/1110 but if you have a strong maths background, and/or significant programming experience, you might like to choose COMP1130/1140. Note that you choose 1130 you will be able to drop back to 1100 in the first 2 weeks.
  • You should make sure you do MATH1005 and COMP1600 in your first year.

Majors and Minors

See available majors and minors for this program


You will be required to complete a specialisation as a compulsory part of your BAC:
Intelligent Systems Specialisation
Theoretical Computer Science Specialisation
Systems Architecture Specialisation

Electives

If you are in the single degree then in your first year you have two computing electives and two university electives to choose.

  • To find 1000-level (first year) elective courses, use the catalogue search.
  • University electives can be additional computing courses, or courses from anywhere in the university.
  • You have two computing elective to choose in your first year.  One must be a COMP course (eg COMP1720 (S2), COMP1710 (S1) , COMP2400 (S2), or COMP2610(S2)). Your other computing elective could be another COMP course as above, or MATH1013 (S1 or S2), MATH1014, STAT1003 (S1), STAT1008 (S2), ENGN1211 (S1)
  • Courses that can be taken in first year as computing or other electives and that meet your computing specialisation requirements are: COMP2610 (Theory of Computer Science Specialisation), and COMP2400 (Systems Architecture Specialisation). Students should consider these in light of their performance in Semester One computing and maths courses and take them only if they have performed well in 1st semester.
  • If you enjoy and are good at  mathematics and do not plan to do a major from another area of study, then you are encouraged to consider doing the following:
    • Semester 1: MATH1013 Maths and Applications 1, or MATH1115 Maths and Applications 1 (Hons) (only recommended for outstanding maths students)
    • Semester 2: MATH1014 Maths and Applications 2, or MATH1116 Maths and Applications 2 (Hons) (only recommended for outstanding maths students)
  • Suggested university electives in your first year if you are interested in Engineering are: Semester 1 - PHYS1001 or PHYS1101  and Semester 2 – ENGN1218
  • Suggested university electives if you are interested in Information Systems are Semester 1 or 2: INFS1001
  • If you have an interest in another area (eg management, mathematics, psychology, languages) then you should explore first year courses in these areas and in particular, look at the majors and minors in these areas. These will give you an idea of the first year courses that you should study.
  • Students whose first language is not English often find their transition to studying in Australia difficult because the rules and academic practices here are often very different from their home country.  CECS strongly encourages students who have not studied at an Australian university before to complete ESEN1101 - Essential University English as one of their electives in their first year.  This course provides additional English reading, writing and speaking assistance as well as resources to ensure you can apply the required Australian academic style to the rest of your university career (e.g. essay and report structure, oral presentations, critical thinking, avoiding academic integrity breaches like plagiarism).

Study Options

Single Degree

Study Options

Year 1 48 units COMP1100 Programming as Problem Solving 6 units OR COMP1130; MATH1005 Discrete Mathematical Models 6 units Computing Elective University Elective
COMP1110 Structured Programming 6 units OR COMP1140; COMP1600 Foundations of Computing 6 units Computing Elective University Elective

Flexible Double Degree

Study Options

Year 1 48 units COMP1100 Programming as Problem Solving 6 units OR COMP1130; MATH1005 Discrete Mathematical Models 6 units Computing Elective 6 Units Course from other degree
COMP1110 Structured Programming 6 units OR COMP1140; COMP1600 Foundations of Computing 6 units Course from other degree Course from other degree
Back to the top

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions