• Offered by Research School of Engineering
  • ANU College ANU College of Engineering and Computer Science
  • Course subject Engineering
  • Academic career Undergraduate
  • Course convener
    • AsPr Salman Durrani
    • Dr Salman Durrani
  • Mode of delivery In Person
  • Offered in First Semester 2016
    See Future Offerings

ENGN2218 Electrical Systems & Design builds directly on ENGN1218 Introduction to Electrical Systems by developing the students' understanding of the principles and operation of advanced electronic circuits and devices (bipolar junction transistor, operational amplifier, filters, digital logic gates, ADC and DAC, 555 Timer and Instrumentation amplifiers). It also emphasizes the importance of modelling the behaviour of complex electronic circuits and devices using systematic mathematical techniques. Specific topics include:

  • Steady State RLC circuit analysis: complex numbers, phasors, impedances, complex power.
  • Introduction to Operational Filter Circuits: Transfer functions, Bode Plots, First order active filters (low-pass and high pass).
  • Bipolar Junction Transistors: Basic BJT concepts and circuit models, BJT Amplifiers (bias circuits, small-signal and large-signal equivalent circuits), BJT Common Emitter and Common Collector amplifiers, Cascaded BJT amplifiers.
  • Introduction to Digital Electronics: Number systems, Boolean algebra, Logic gates, Combinational logic circuits, Karnaugh maps, Combinational logic circuit design.

PSPICE is used extensively in the analysis and design.

Learning Outcomes

Having successfully completed this course, students should be able to:-

1. Apply circuit analysis techniques (e.g. Kirchhoff's laws, Thevenin equivalent circuits, Phasors and complex impedances, Transfer functions) to solve electronic circuits.
2. Explain transistor operating modes & analyse operation of basic transistor amplifier circuits.
3. Identify first order filter circuits and draw Bode Plots to determine the frequency response.
4. Explain analogue to digital and digital to analogue conversion techniques and design combinational logic circuits using Karnaugh Maps.
5. Analyse & design electronic circuits for specific applications using op-amps & 555 Timer.
6. Explain in simple terms the working of electronic circuits.
7. Select appropriate mathematical techniques to analyze and design electronic circuits.
8. Utilise a systems approach to identify key design parameters and justify choice of particular electronic components.
9. Build circuits and take measurements using electrical measurement devices such as oscilloscope, function generator, digital multimeter, power supply. Compare the measurements with the behavior predicted by mathematic models and explain the discrepancies.
10. Model and optimise the performance of analogue and digital electronic circuits using simulation packages such as PSPICE and DigitalWorks.
11. Read data sheets and circuit diagrams and recognize building blocks such as op-amp circuits, logic gates, amplifiers, filters and timers
12. Calculate results using scientific calculator (complex mode, base-n mode, engineering mode) in a knowledgeable and confident manner

Professional Skills Mapping:
Mapping of Learning Outcomes to Assessment and Professional Competencies 

Indicative Assessment

  • Computer laboratories (6%)
  • Hardware laboratories (20%)
  • Mastering Tutorials (4%)
  • Mid-Semester Exam (20%)
  • Final Exam (50%)

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Requisite and Incompatibility

To enrol in this course you must have completed ENGN1218.

Prescribed Texts

Allan R. Hambly, Electrical Engineering Principles and Applications, 5th edition, Pearson/Prentice Hall, 2011. http://library.anu.edu.au/record=b2442317

Companion website which also contains solutions to selected problems: http://www.pearsonhighered.com/hambleyinternational

Majors

Minors

Fees

Tuition fees are for the academic year indicated at the top of the page.  

If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Student Contribution Band:
Band 2
Unit value:
6 units

If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Domestic fee paying students
Year Fee
2016 $3480
International fee paying students
Year Fee
2016 $4638
Note: Please note that fee information is for current year only.

Offerings and Dates

The list of offerings for future years is indicative only

First Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery
3155 15 Feb 2016 26 Feb 2016 31 Mar 2016 27 May 2016 In Person

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions