This is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology revolution.
As a degree accredited by the Australian Computer Society you will not only learn advanced computing techniques and have the opportunity to complete a unique specialisation, but also develop exceptional professional skills including communication and teamwork.
While some of our students are developing code which controls unmanned aerial vehicles, others are busy writing algorithms to mine through Peta-bytes of data. If mastering challenging projects is your thing, the ANU Bachelor of Advanced Computing (Honours) can launch you into a spectacular career.
The program is an elite, research-focused program for exceptional students who want to pursue
- A career based in the quantitative modelling of the real world;
- A research oriented career in government, commerce or industry;
- Or postgraduate research leading to a higher degree.
This program provides a unique opportunity within Australia to study mathematics.
- We offer small class sizes when compared to other top Australian universities.
- We offer student access to some of the best mathematicians in Australia.
- We offer a stream of advanced courses from first year through to the honours year.
This program is not available for Semester 2 commencement.
Career Options
Graduates from ANU have been rated as Australia's most employable graduates and among the most sought after by employers worldwide.
The latest Global Employability University Ranking, published by the Times Higher Education, rated ANU as Australia's top university for getting a job for the fourth year in a row.
Employment Opportunities
The best computing professionals often have knowledge or a wider field than computing alone. BAC graduates will be ideally positioned to shape their chosen sector of the computing industry now and into the future. They will acquire the skills and knowledge to become leaders in the ICT industry.
Opportunities exist in high tech industries, software start-ups computing research and developement as well as specialist computing organisations. Examples include, software developers, data mining specialists for insurance, banking and health sectors, human-computer interction specialists for software services industries, embedded systems developers for defence, and automotive industries.
The best computing professionals often have knowledge or a wider field than computing alone. BAC graduates will be ideally positioned to shape their chosen sector of the computing industry now and into the future. They will acquire the skills and knowledge to become leaders in the ICT industry.
Opportunities exist in high tech industries, software start-ups computing research and developement as well as specialist computing organisations. Examples include, software developers, data mining specialists for insurance, banking and health sectors, human-computer interction specialists for software services industries, embedded systems developers for defence, and automotive industries.
Learning Outcomes
Upon successful completion, students will be able to:
1. Define and analyse complex problems, and design, implement and evaluate solutions that demonstrate an understanding of the systems context in which software is developed and operated including economic, social, historical, sustainability and ethical aspects.
2. Demonstrate an operational and theoretical understanding of the foundations of computer science including programming, algorithms, logic, architectures and data structures
3. Recognise connections and recurring themes, including abstraction and complexity, across the discipline
4. Adapt to new environments and technologies, and to innovate
5. Demonstrate an understanding of deep knowledge in at least one area of computer science
6. Communicate complex concepts effectively with diverse audiences using a range of modalities
7. Work effectively within teams in order to achieve a common goal
8. Demonstrate commitment to professional conduct and development that recognises the social, legal and ethical implications of their work, to work independently, and self- and peer-assess performance.
9. Demonstrate an understanding of the fundamentals of research methodologies, including defining research problems, background reading and literature review, designing experiments, and effectively communicating results.
10. Apply research methods to the solution of contemporary research problems in computer science.
Upon successful completion, students will have the skills and knowledge to:
- Think clearly, sequentially and logically, as demonstrated by the critical analysis of quantitative problems, such as the ability to read, understand and write mathematical proofs.
- Demonstrate mastery of the concepts and techniques of Advanced Mathematics
- Communicate concepts and results clearly and effectively both in writing and orally
- Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, and draw appropriate conclusions
- Engage in critical review of appropriate and relevant information sources
- Work and learn in both independent and collaborative ways with others to encompass diverse abilities and perspectives.
Further Information
The computing industry has grown very rapidly in the last 40 years, with various specialized areas requiring advanced computational techniques emerging. The pervasiveness of computers and computer-enabled devices is rapidly becoming established in modern society. Humans are interacting with computers in ever more profound and sophisticated ways. Allied with this, computers are having to act more intelligently in many different contexts. As the scale and complexity of these computer systems increases, so too do challenges in their engineering. As the amount of data increases exponentially, new challenges in the mining and warehousing of information emerge. In all areas of computing, increasingly sophisticated algorithms underpin all of the resulting technologies. The resulting hardware and software systems in these areas are complex; hence a systems engineering perspective on their design and construction is valuable.
In these areas of computing, another emerging trend is linkages with other disciplines. Valuable perspectives on artificial intelligence are emerging from the study of natural intelligence and biological systems. Psychology is a central element in human-computer interaction. The explosion in the volume and utility of information from bioinformatics is a key driver of large-scale data systems. An engineering approach, with emphasis on both hardware and software, is needed for the design of embedded computing technology. In all cases, reliable and systematic software development remains as a key element.
The Bachelor of Advanced Computing graduate will posses technical knowledge of programming, With these as a foundation, their technical knowledge will have been honed by the study of a selection of advanced computing topics. Professional and practical skills in software development will be gained through a series of courses in software analysis, design and construction, capped off with a group software project, With professional skills developed in the areas of entrepreneurship and management, the graduate will be in a position to apply their in-depth technical knowledge to become innovators in industry.
The best computing professionals are informed by knowledge of a wider field than computing alone. Graduates fulfilling a Major in an area of advanced computing and a cognate interdisciplinary area will be ideally positioned to shape the respective sector of the computing industry as it evolves over the near future. This will also imbue a capacity for lifelong learning by exposure to a broader range of perspectives and of ways of studying.
The degree also offers a research pathway for graduates wishing to pursue careers with a high emphasis on research.
The computing industry has grown very rapidly in the last 40 years, with various specialized areas requiring advanced computational techniques emerging. The pervasiveness of computers and computer-enabled devices is rapidly becoming established in modern society. Humans are interacting with computers in ever more profound and sophisticated ways. Allied with this, computers are having to act more intelligently in many different contexts. As the scale and complexity of these computer systems increases, so too do challenges in their engineering. As the amount of data increases exponentially, new challenges in the mining and warehousing of information emerge. In all areas of computing, increasingly sophisticated algorithms underpin all of the resulting technologies. The resulting hardware and software systems in these areas are complex; hence a systems engineering perspective on their design and construction is valuable.
In these areas of computing, another emerging trend is linkages with other disciplines. Valuable perspectives on artificial intelligence are emerging from the study of natural intelligence and biological systems. Psychology is a central element in human-computer interaction. The explosion in the volume and utility of information from bioinformatics is a key driver of large-scale data systems. An engineering approach, with emphasis on both hardware and software, is needed for the design of embedded computing technology. In all cases, reliable and systematic software development remains as a key element.
The Bachelor of Advanced Computing graduate will posses technical knowledge of programming, With these as a foundation, their technical knowledge will have been honed by the study of a selection of advanced computing topics. Professional and practical skills in software development will be gained through a series of courses in software analysis, design and construction, capped off with a group software project, With professional skills developed in the areas of entrepreneurship and management, the graduate will be in a position to apply their in-depth technical knowledge to become innovators in industry.
The best computing professionals are informed by knowledge of a wider field than computing alone. Graduates fulfilling a Major in an area of advanced computing and a cognate interdisciplinary area will be ideally positioned to shape the respective sector of the computing industry as it evolves over the near future. This will also imbue a capacity for lifelong learning by exposure to a broader range of perspectives and of ways of studying.
The degree also offers a research pathway for graduates wishing to pursue careers with a high emphasis on research.
Admission Requirements
Admission to all programs is on a competitive basis. Admission to undergraduate degrees is based on meeting the ATAR requirement or an equivalent rank derived from the following qualifications:
• An Australian year 12 qualification or international equivalent; OR
• A completed Associate Diploma, Associate Degree, AQF Diploma, Diploma, AQF Advanced Diploma, Graduate Certificate or international equivalent; OR
• At least one standard full-time year (1.0 FTE) in a single program of degree level study at an Australian higher education institution or international equivalent; OR
• An approved tertiary preparation course unless subsequent study is undertaken.
Click HERE for further information about domestic admission.
More information about ATAR requirements for individual programs can be found HERE.
The table below is a guide to the entry level required for domestic applicants. Exact entry level will be set at time of offer.
- ATAR:
- 95
- QLD Band:
- 4
- International Baccalaureate:
- 37
Domestic applicant entry requirements
Queensland Band equivalents are a guide only - selection is made on a UAI equivalent that is not available to students.
International applicant entry requirements
International applicants may view further information on admissions requirements at Entry Requirements for International Undergraduate Applicants
The University reserves the right to alter or discontinue its programs as required.
Pathways
There are a range of pathways available to students for entry into Bachelor of Advanced Computing (Honours):
-Academy of Interactive Entertainment (AIE): A Diploma from AIE might be a pathway into Bachelor of Advanced Computing (Honours) for eligible students and may also provide advance standing into the program.
-International agreements/pathways: College of Engineering and Computer Science has a range of articulation agreements with institutions around the world. Students completing the appropriate qualification in these institutions may be approved for entry and credit exemptions towards Bachelor of Advanced Computing (Honours).
- Maths Bridging course: ANU College offers a Maths Bridging course for students who do not meet pre-requisite for Maths for entry into Bachelor of Advanced Computing (Honours). Successful completion of the Maths Bridging course meets the Maths pre-requisite for entry into this program (other entry requirements still apply).
Prerequisites
ACT: Mathematical Methods major.
NSW: Mathematics.
ACT Specialist Mathematics double major or NSW HSC Mathematics Extension 2 or equivalent. Students with excellent marks in either ACT Specialist Mathematics major-minor or NSW HSC Mathematics Extension 1 or equivalent may be permitted to enrol.
Adjustment Factors
The National Access Scheme 2014
ANU offers bonus points for nationally strategic senior secondary subjects, and in recognition of difficult circumstances that students face in their studies.
Bonus points are applied to all applicants with an ATAR at or above 70. Points are awarded in accordance with the approved schedule, and no more than 10 points (maximum 5 academic points and maximum 5 equity points) will be awarded.
Bonus points do not apply to programs with an ATAR cutoff of 98 or higher.
Bonus Points are only awarded to domestic applicants applying for admission through UAC who have not previously attempted tertiary study.
How to apply
Academic Bonus Points: senior secondary students do not need to apply for ANU academic bonus points. They are automatically added in accordance with the schedule.
Educational Access Scheme: senior secondary students do not need to apply if their school is part of the Priority School Funding Program or Country Areas Program. All other applicants should refer to http://www.uac.edu.au/eas/ for more information.
Indicative fees
Bachelor of Advanced Computing (Honours) - Commonwealth Supported Place (CSP)
Bachelor of Mathematical Sciences - Commonwealth Supported Place (CSP)
For more information see: http://www.anu.edu.au/students/program-administration/costs-fees
- Annual indicative fee for international students
- $39,024.00
Scholarships
ANU offers a wide range of scholarships to students to assist with the cost of their studies.
Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are. Specific scholarship application process information is included in the relevant scholarship listing.
For further information see the Scholarships website.
Program Requirements
The Bachelor of Advanced Computing (Honours) flexible double degree component requires completion of 144 units, of which:
A maximum of 48 units may come from completion of 1000-level courses
The 144 units must include:
54 units from completion of compulsory courses from the following list:
COMP1600 Foundations of Computing
COMP2100 Software Design Methodologies
COMP2120 Software Engineering
COMP2300 Computer Organisation and Program Execution
COMP2310 Systems, Networks and Concurrency
COMP2420 Introduction to Data Management, Analysis and Security
COMP3600 Algorithms
COMP4450 Advanced Computing Research Methods
MATH1005 Discrete Mathematical Models
6 units from completion of course from the following list:
COMP1100 Programming as Problem Solving
COMP1130 Programming as Problem Solving (Advanced)
6 units from completion of course from the following list:
COMP1110 Structured Programming
COMP1140 Structured Programming (Advanced)
24 units from completion of one of the following specialisations:
Intelligent Systems
Systems and Architecture
Theoretical Computer Science
6 units from completion of further courses from the subject area COMP Computer Science
6 units from completion of further 3000- and 4000-level courses from the subject area COMP Computer Science
Either:
12 units from completion of 3000- or 4000-level courses from the subject area COMP Computer Science
Or:
12 units from completion of courses from the following list:
ENGN3230 Engineering Innovation
VCUG3001 Unravelling Complexity
VCUG3002 Mobilising Research
Either:
6 units from completion of further courses from the subject area COMP Computer Science
Or:
6 units from completion of courses from the following list:
MATH1013 Mathematics and Applications 1
MATH1014 Mathematics and Applications 2
MATH1115 Advanced Mathematics and Applications 1
MATH1116 Advanced Mathematics and Applications 2
MATH2301 Games, Graphs and Machines
ENGN1211 Discovering Engineering
STAT1008 Quantitative Research Methods
STAT1003 Statistical Techniques
Either:
24 units from completion of COMP4550 Advanced Computing Research Project
Or:
12 units from completion of COMP4560 Advanced Computing Project
12 units from completion of further 4000-level courses from the subject area COMP Computer Science
HONS4700 Final Honours Grade will be used to record the Class of Honours and the Mark. The Honours Mark will be a weighted average percentage mark (APM) calculated by first calculating the average mark for 1000,2000, 3000 and 4000 level courses. We denote these averages: A1, A2, A3, and A4 respectively. The averages are computed based on all units counted towards satisfaction of degree requirements, excluding non-COMP electives. Finally these averages are combined using the formula APM = (0.1 X A1) + (0.2 X A2) + (0.3 X A3) + (0.4 X A4).
The Bachelor of Mathematical Sciences flexible double degree component requires completion of 96 units, of which:
A maximum of 36 units may come from completion of 1000-level courses
The 96 units must consist of:
36 units from the completion of the following compulsory courses:
MATH1115 Advanced Mathematics and Applications 1
MATH1116 Advanced Mathematics and Applications 2
MATH2222 Introduction to Mathematical Thinking: Problem Solving and Proofs
MATH2305 Applied Mathematics I
MATH2320 Advanced Analysis 1: Metric Spaces and Applications
MATH2322 Advanced Algebra 1: Groups, Rings and Linear Algebra
36 units from completion of 3000- or 4000-level courses from the subject area MATH Mathematics
24 units from completion of courses from the Science course list
Students must achieve a minimum 75% weighted average mark in each period (Summer/First Semester/Autumn and Winter/Second Semester/Spring) in order to continue in the Bachelor of Mathematical Sciences.
Students who do not achieve a minimum of 75% weighted average mark will be transferred to the Bachelor of Science.
Specialisations
Bachelor of Advanced Computing (Honours) Specialisations
Study Options
Year 1 | COMP1100 Programming as Problem Solving 6 units OR COMP1130; | MATH1005 Discrete Mathematical Models 6 units | Elective 6 units | |
COMP1110 Structured Programming 6 units OR COMP1140; | COMP1600 Foundations of Computing 6 units | |||
Year 2 | COMP2100 Software Design Methodologies 6 units | COMP2300 Computer Organisation and Program Execution 6 units | ||
COMP2120 Software Engineering 6 units | COMP2310 Systems, Networks and Concurrency 6 units | Elective 6 units | ||
Year 3 | COMP2420 Introduction to Data Management, Analysis and Security 6 units | COMP3120 Managing Software Development 6 units | ||
ENGN3230 Engineering Innovation 6 units | COMP3600 Algorithms 6 units | |||
Year 4 | COMP4450 Advanced Computing Research Methods 6 units | Computing Specialisation course 6 units | ||
Computing or VC elective course 3000 or 4000 level 6 units | Computing or VC elective course 3000 or 4000 level 6 units | |||
Year 5 | COMP4560 Advanced Computing Project 6 to 12 units | Computing Elective course 4000 level 6 units | Computing Specialisation course 6 units | |
COMP4560 Advanced Computing Project 6 to 12 units | Computing Elective course 4000 level 6 units | Computing Specialisation course 6 units |
Back to the Bachelor of Advanced Computing (Honours) page
The Bachelor of Advanced Computing (Honours) (BAC) is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology revolution.
The BAC can be taken as a single degree which includes a number of core and compulsory courses including a computing specialisation. The single degree also offers 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a further computing major, minor, or specialisation), or from other university courses.
The BAC can also be taken as a part of many Flexible Double Degrees.
Single degree
- This degree requires a total of 192 units (each course is typically 6 units though some may be 12 units or higher)
- Typically you will study four courses per semester (total of 24 units)
- There are a number of core and compulsory courses
- You will need to complete a computing specialisation
- 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a computing major, minor, or specialisation), or from other university courses.
- You can do a maximum of 60u 1000 level courses in your single degree
Double degree
- There are no university electives available in the Flexible Double Degree.
- This degree requires 144 units of the compulsory Advanced Computing requirements (each course is typically 6 units though some may be 12 units or higher)
- Typically you will study four courses per semester (total of 24 units)
- You will need to complete a computing specialisation
- Typically you can do a maximum of 72u 1000 level courses in your Flexible Double Degree
- You can find your Flexible Double Degree with the BSEng from Program and Courses
About this degree
- The degree is made of up compulsory requirements, additional computing electives, and 48 units (eight courses) of electives
- In the single degree you have 48 units of university electives (eight courses). These courses can be used to study more computing courses, or a major or minor from another area of the university including Engineering, or a selection of courses that suits your interests.
- In the Flexible Double Degree, you have no university electives - your other degree requirements use up all of these.
Enrolment Status
While it’s possible to enrol in fewer courses per semester, it will take you longer to finish your program and get your degree. There are maximum time limits for completion of the degree on a part-time basis. If you are an international student you must always be full-time.
Important things to keep in mind when choosing your 1000-level courses
- When you enrol for the first time you will typically study '1000-level' courses. These courses have '1' as the first number in their course code, such as COMP1100.
- You need to enrol in courses for both First Semester and Second Semester though note that you can change your Semester 2 courses all the way until July.
- You can’t study more than four courses (24 units) per semester, 48u for the year, and international students cannot study less than 24u a semester expect in exceptional circumstances and with approval.
- You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC half of the Flexible Double Degree.
- In choosing your first year programming courses you will have a choice of doing COMP1100 or COMP1130 in Semester 1, and COMP1110 and COMP1140 in Semester 2. The standard courses are COMP1100/1110 but if you have a strong maths background, and/or significant programming experience, you might like to choose COMP1130/1140. Note that you choose 1130 you will be able to drop back to 1100 in the first 2 weeks.
- You should make sure you do MATH1005 and COMP1600 in your first year.
Majors and Minors
See available majors and minors for this program
You will be required to complete a specialisation as a compulsory part of your BAC:
Intelligent Systems Specialisation
Theoretical Computer Science Specialisation
Systems Architecture Specialisation
Electives
If you are in the single degree then in your first year you have two computing electives and two university electives to choose.
- To find 1000-level (first year) elective courses, use the catalogue search.
- University electives can be additional computing courses, or courses from anywhere in the university.
- You have two computing elective to choose in your first year. One must be a COMP course (eg COMP1720 (S2), COMP1710 (S1) , COMP2400 (S2), or COMP2610(S2)). Your other computing elective could be another COMP course as above, or MATH1013 (S1 or S2), MATH1014, STAT1003 (S1), STAT1008 (S2), ENGN1211 (S1)
- Courses that can be taken in first year as computing or other electives and that meet your computing specialisation requirements are: COMP2610 (Theory of Computer Science Specialisation), and COMP2400 (Systems Architecture Specialisation). Students should consider these in light of their performance in Semester One computing and maths courses and take them only if they have performed well in 1st semester.
- If you enjoy and are good at mathematics and do not plan to do a major from another area of study, then you are encouraged to consider doing the following:
- Suggested university electives in your first year if you are interested in Engineering are: Semester 1 - PHYS1001 or PHYS1101 and Semester 2 – ENGN1218
- Suggested university electives if you are interested in Information Systems are Semester 1 or 2: INFS1001
- If you have an interest in another area (eg management, mathematics, psychology, languages) then you should explore first year courses in these areas and in particular, look at the majors and minors in these areas. These will give you an idea of the first year courses that you should study.
- Students whose first language is not English often find their transition to studying in Australia difficult because the rules and academic practices here are often very different from their home country. CECS strongly encourages students who have not studied at an Australian university before to complete ESEN1101 - Essential University English as one of their electives in their first year. This course provides additional English reading, writing and speaking assistance as well as resources to ensure you can apply the required Australian academic style to the rest of your university career (e.g. essay and report structure, oral presentations, critical thinking, avoiding academic integrity breaches like plagiarism).
Study Options
Single Degree
Study Options
Year 1 48 units | COMP1100 Programming as Problem Solving 6 units OR COMP1130; | MATH1005 Discrete Mathematical Models 6 units | Computing Elective | University Elective |
COMP1110 Structured Programming 6 units OR COMP1140; | COMP1600 Foundations of Computing 6 units | Computing Elective | University Elective |
Flexible Double Degree
Study Options
Year 1 48 units | COMP1100 Programming as Problem Solving 6 units OR COMP1130; | MATH1005 Discrete Mathematical Models 6 units | Course from other degree | Course from other degree |
COMP1110 Structured Programming 6 units OR COMP1140; | COMP1600 Foundations of Computing 6 units | Course from other degree | Course from other degree |
Back to the Bachelor of Mathematical Sciences page
Please note that if you are commencing your studies in semester 2 there may be restrictions on the courses available for enrolment. We strongly recommend that you make an appointment with an academic advisor. You can make an appointment by using our online booking system here. Alternatively, you can call Science Central on 6125 2809. There will also be advisory sessions offered during the week before semester commences.
Mathematics is the study of universal patterns and structures and is the quantitative language of the world. It underpins information technology, computer science, engineering, and the physical sciences; and it plays an increasingly important role in the biological and medical sciences, economics, finance, environmental science, sociology and psychology. The Bachelor of Mathematical Sciences provides the tools to study these patterns and structures and along the way you learn transferable skills in critical thinking, analysis, investigation and evidenced-based decision making.
Your program can concentrate on theoretical mathematics, or can extend to a range of applicable mathematical areas such as mathematical modelling, mathematical finance, mathematical economics, mathematical physics, and quantitative biology.
Single degree
In a Bachelor of Mathematical Sciences single degree program you will study a total of 144 units (24 courses) and as a full time student you will need to take 24 units (4 courses) per semester. Of these courses you will need to complete a minimum of 12 core and advanced MATH courses (72 units) together with another 4 courses from the Science course list. You also can choose 8 elective courses (48 units) from any ANU Colleges. You can try a range of courses or take a major or minor in a non-mathematics subject, such as philosophy, history or computing. The choice is yours.
Summary:
This degree requires 144 units (24 courses)A maximum of 60 units (10 courses) of 1000-level courses
36 units (6 courses) of core MATH courses
A minimum of 36 units (6 courses) of advanced MATH 3000-level courses
24 units from completion of courses from the Science course list
An average mark of 75% in core and advanced MATH courses must be
maintained each semester to remain in the program 48 units (8 course) from the Science course list or another ANU College
Double degree
The Bachelor of Mathematical Sciences can also be taken as a part of many double degrees.
In a Bachelor of Mathematical Sciences double degree program you will study a total of 96 units (16 courses) and as a full time student you will take 4 courses per semester (24 units). However, in each semester you will be likely to take 2 courses from your Mathematical Sciences degree and 2 courses from the other half of your double degree – still a total of 4 courses a semester.
Summary:
36 units (6 courses) of core MATH courses
A minimum of 36 units (6 courses) of advanced MATH 3000-level courses
24 units from completion of courses from the Science course list
An average mark of 75% in core and advanced MATH courses must be maintained each semester to remain in the program
Enrolment Status
It is possible to enrol in fewer courses per
semester but it will take you longer to finish your program and get your
degree. If you are an international student you must always be enrolled
full-time in 24 units (4 course) each semester.
- You need to enrol in courses for both First Semester and Second Semester.
- You can’t study more than 4 courses (24 units) per semester, 8 courses (48 units) for the year.
- You may take 1000-level courses later
in your program. But remember you can’t
count more than ten 1000-level courses (60 units) towards your single degree or
six 1000-level courses (36 units) towards your Mathematical Sciences half of
the double degree.
Electives
Remember you can
choose up to 8 courses from another ANU College if you are undertaking the single Bachelor of Mathematical
Sciences program.
Study Options
Single degree
This is a typical study pattern for the first year of a student undertaking a Bachelor of Mathematical Sciences.Study Options
Year 1 48 units | MATH1115 Advanced Mathematics and Applications 1 6 units | MATH2222 Introduction to Mathematical Thinking: Problem-Solving and Proofs 6 units | Science or non-science course | Science or non-science course |
MATH1116 Advanced Mathematics and Applications 2 6 units | MATH2322 Advanced Algebra 1: Groups, Rings and Linear Algebra 6 units | Science or non-science course | Science or non-science course |
Double degree
This is a typical study pattern for the first year of a student undertaking a Bachelor of Mathematical Sciences with another three year degree, such as the Bachelor of Arts or Bachelor of Science . Please note that for some double degrees (e.g. with Bachelor of Engineering) you may only be able to take one course in semester 1 for your mathematical science degree. In these circumstances it is recommended that in your first year you take MATH1115, MATH1116.Study Options
Year 1 48 units | MATH1115 Advanced Mathematics and Applications 1 6 units | MATH2222 Introduction to Mathematical Thinking: Problem-Solving and Proofs 6 units | Degree B Course | Degree B Course |
MATH1116 Advanced Mathematics and Applications 2 6 units | MATH2322 Advanced Algebra 1: Groups, Rings and Linear Algebra 6 units | Degree B Course | Degree B Course |
Academic Advice
For further information, you can:
- Visit the Mathematical Sciences Institute webpage here, or
- Download the Science first year course guide available here, or
- View our program presentation videos located on our New commencers & first year students page, or
- Email us at science.enquiries@anu.edu.au, or
- Come and talk to someone face-to-face. You can make an appointment with an academic advisor here or by calling Science Central on 6125 2809.