Learning Outcomes
Upon successful completion, students will have the knowledge and skills to:
On satisfying the requirements for this course students will have the knowledge and skills to:- Describe the reasons for the failure of relativistic quantum mechanics, such as the causality problem, and the need for quantum field theory
- Describe the origin of particles and forces
- Analyse the statistical distributions of identical particles and the repulsive/attractive nature of the forces as a function of spins
- Apply Feynman rules to calculate probabilities for basic processes with particles (decay and scattering)
- Obtain classical and/or non-relativistic limits of fully quantum and relativistic models, and identify the relativistic origin of effects such as the spin-orbit interaction
- Use effective field theory techniques to develop models at large scales
- Describe qualitatively effects such as superconductivity, superfluidity, and ferromagnetism using the concepts of gauge invariance, Goldstone and Higgs mechanism, and spontaneous symmetry breaking.
- Apply mathematical tools such as complex analysis, Gaussian path integration, and Fourier analysis in the context of physical systems
- Develop computational skills by solving numerically simple problems such as pionless effective field theory and the Ising model.
- Develop oral and written communication skills
Other Information
Indicative Assessment
Assessment consists of:- Assignments (40%; LO 1-8)
- Computational project (10%; LO 9-10)
- Mid-semester written exam (20%; LO 1-6)
- Final written exam (20%; LO 1-8)
- Oral exam (10%; LO 10)
The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.
Workload
One three hour workshop per week (with online lecture material), and optional weekly tutorial.Requisite and Incompatibility
Preliminary Reading
"Quantum Field Theory in a Nutshell" by A. Zee (2nd ed., 2010)
"Quantum Field Theory for the Gifted Amateur", by T. Lancaster and S. Blundell (2015)
Fees
Tuition fees are for the academic year indicated at the top of the page.
If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.
- Student Contribution Band:
- 2
- Unit value:
- 6 units
If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees. Where there is a unit range displayed for this course, not all unit options below may be available.
Units | EFTSL |
---|---|
6.00 | 0.12500 |
Course fees
- Domestic fee paying students
Year | Fee |
---|---|
2018 | $3660 |
- International fee paying students
Year | Fee |
---|---|
2018 | $5160 |
Offerings, Dates and Class Summary Links
ANU utilises MyTimetable to enable students to view the timetable for their enrolled courses, browse, then self-allocate to small teaching activities / tutorials so they can better plan their time. Find out more on the Timetable webpage.
Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.
Second Semester
Class number | Class start date | Last day to enrol | Census date | Class end date | Mode Of Delivery | Class Summary |
---|---|---|---|---|---|---|
9274 | 22 Jul 2019 | 29 Jul 2019 | 31 Aug 2019 | 25 Oct 2019 | In Person | N/A |