• Offered by Biology Teaching and Learning Centre
  • ANU College ANU Joint Colleges of Science
  • Course subject Biology
  • Areas of interest Genetics
  • Academic career UGRD
  • Course convener
    • Prof Rod Peakall
  • Mode of delivery In Person
  • Co-taught Course
  • Offered in First Semester 2021
    See Future Offerings

Have you ever watched a crime show on TV and wondered just how DNA forensic analysis really works? Does everyone really have a unique DNA fingerprint? Have you been tempted to spend $100 to get your own DNA tested? If so, did you know that your test results could help you to trace your ethnic background, find missing relatives and even help the police find a murderer? Have you ever wondered why you are a similar height to your siblings - is it because of your genes, or because of the environment you grew up in? Why do traits vary even when their underlying DNA sequence is exactly the same? What role does genetics play in your risk of developing diseases such as diabetes?


This course will introduce you to the principles of population, evolutionary and quantitative genetics. We do this by asking: what can we learn from DNA? In answering this question, we focus on the practical applications of the theory illustrated by human forensic DNA analysis, conservation genetics and evolutionary genetics. In the practical component of the course, students will gain hands-on experience in human forensic DNA profiling in the laboratory, as well as statistical analysis skills across a range of genetic topics. Other topics covered include Next Generation Sequencing and its emerging and far reaching applications in human forensics and conservation genetics; and genetic adaptation including epigenetics and plasticity.


Honours Pathway Option (HPO):

Entry to the HPO requires a mark of at least 75 in BIOL1003 or BIOL1004 and approval of the course convenor. The options available may vary from year to year.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

  1. Explain the key concepts in population, evolutionary and quantitative genetics including: the basis and estimation of genetic variation; Hardy-Weinberg Equilibrium; population substructure, genetic drift; effective population size, inbreeding and inbreeding depression; genetic adaptation including epigenetics and genetic plasticity; and heritability.
  2. Understand the range of molecular laboratory techniques used routinely in human forensic analysis and population genetic analysis including sex typing, DNA profiling, Single Nucleotide Polymorphism (SNP) detection, Sanger DNA sequencing and Next Generation Sequencing.
  3. Perform the statistical analysis of genetic data relevant to forensic, conservation, quantitative and evolutionary genetics, and summarise and interpret the outcomes. This will be done by hand, calculator, and other statistical software including the widely-used package R.
  4. Search the literature to identify papers relevant to the genetic data sets provided for statistical analysis and integrate and evaluate the findings in written form.

Other Information

This course is designed for both students needing a solid grounding in the principles of population and evolutionary genetics, in order to pursue studies in the fields of genetics, ecology, evolution and computational biology, as well as students who wish to gain a thorough understanding of the practical application of population genetics to human forensic DNA analysis, conservation biology and evolutionary biology. The focus is on principles and concepts, illustrated by examples drawn from studies of human, agricultural, laboratory and wild populations. The course also serves as an excellent introduction to concepts in quantitative biology, teaching students how to break down the calculation of somewhat complex genetic statistics into a series of simple steps that can be performed with a hand calculator, or computer software such as R. Feedback from students who have taken the course consistently highlights gains in confidence and skills for tackling biological calculations of broad relevance to any field in biology, and the value of the skills learned for courses taken later in their degree.

Indicative Assessment

  1. Assignment 1 - Intro to Forensic DNA Analysis (15) [LO 1,2,3,4]
  2. Assignment 2 - Statistics of Forensic DNA Analysis (25) [LO 1,2,3,4]
  3. Assignment 3 - Quantitative Genetics (10) [LO 1,2,3,4]
  4. Mini-assessment – Small regular assessment tasks spread across the course (10) [LO 1,2,3,4]
  5. Final Exam (40) [LO 1,2,3]

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Workload

The expected workload will consist of approximately 130 hours throughout the semester including:

  • Face-to face component which may consist of 3 x 1 hour lectures/tutorials per week (total 36 hours), 6 x 3 hours of practical and 6 x 1 hour of computer lab sessions throughout the semester.
  • Approximately 70 hours of self directed study which will include preparation for lectures, presentations and other assessment tasks.

Students are expected to actively participate and contribute towards discussions.

Inherent Requirements

Not yet determined

Requisite and Incompatibility

To enrol in this course, you must have successfully completed BIOL1003. Incompatible with BIOL6006

Prescribed Texts

Nil

Fees

Tuition fees are for the academic year indicated at the top of the page.  

If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Student Contribution Band:
2
Unit value:
6 units

If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Domestic fee paying students
Year Fee
2021 $4110
International fee paying students
Year Fee
2021 $5880
Note: Please note that fee information is for current year only.

Offerings, Dates and Class Summary Links

The list of offerings for future years is indicative only.
Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.

First Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery Class Summary
3932 22 Feb 2021 01 Mar 2021 31 Mar 2021 28 May 2021 In Person N/A

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions