• Offered by School of Engineering
  • ANU College ANU College of Engineering and Computer Science
  • Course subject Engineering
  • Areas of interest Computer Science, Information Technology, Engineering, Mechatronics, Advanced Computing
  • Academic career UGRD
  • Mode of delivery In Person

This course has been adjusted for remote participation in Semester 1 2021.

Computer Vision is an important field of Artificial Intelligence concerned with questions such as "how to extract information from image or video, and how to build a machine to see". Recent explosive growth of digital imaging technology, advanced computing, and deep learning makes the problems of automated image interpretation even more exciting and much more relevant than ever. This course introduces students to fundamental problems in image processing and computer vision, as well as their state-of-the-art solutions. Topics covered in detail include: image formation, image filtering, camera geometry, thresholding and image segmentation, edge, point and feature detection, geometric frameworks for vision, single view and two views geometry; 3D visual reconstruction, camera calibration; stereo vision, image classification and object recognition, deep learning and neural networks for computer vision etc. The course features extensive practical components including computer labs and Term Research projects that provide students with the opportunity to practice and refine their skills in image processing and computer vision.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

  1. Understand and master basic knowledge, theories and methods in image processing and computer vision.
  2. Identify, formulate and solve problems in image processing and computer vision.
  3. Analyse, evaluate and examine existing practical computer vision systems.
  4. Communicate effectively and work in teams to develop a working computer vision system.
  5. Critically review and assess scientific literature in the field and apply theoretical knowledge to identify the novelty and practicality of proposed methods.
  6. Design and develop practical and innovative image processing and computer vision applications or systems.
  7. Conduct themselves professionally and responsibly in the areas of computer vision image processing and deep learning.

Indicative Assessment

  1. Labs (30) [LO 1,2,3,4,5,6,7]
  2. Project (20) [LO 1,2,3,4,5,6,7]
  3. Quiz and/or Exam (50) [LO 1,2,3,4,5,6,7]

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Workload

10 hours per week; which consists of 3 hours lecture/tute time, 2 hours lab time, and the rest are for project and self-study.

Inherent Requirements

Information on inherent requirements for this course is currently not available

Requisite and Incompatibility

To enrol in this course you must have completed either ENGN2228 OR COMP2120 OR COMP3600. Incompatible with ENGN6528

Prescribed Texts

no prescribed textbook is needed.

Preliminary Reading

Computer Vision: Algorithms and Applications - Szeliski.org

szeliski.org/Book/

Assumed Knowledge

  1. Basic calculus, linear algebra and basic probability theory.
  2. Entry-level computer programming experience in either Matlab, Python, or C/C++.
  3. Previous knowledge of digital signal processing or image and graphics processing will be helpful, but is not essential. 

This course is open to and welcomes students from Engineering, Computer Science, Science and Mathematics backgrounds.

Minors

Fees

Tuition fees are for the academic year indicated at the top of the page.  

Commonwealth Support (CSP) Students
If you have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). More information about your student contribution amount for each course at Fees

Student Contribution Band:
2
Unit value:
6 units

If you are a domestic graduate coursework student with a Domestic Tuition Fee (DTF) place or international student you will be required to pay course tuition fees (see below). Course tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Note: Please note that fee information is for current year only.

Offerings, Dates and Class Summary Links

There are no current offerings for this course.

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions