• Offered by School of Engineering
  • ANU College ANU College of Engineering Computing & Cybernetics
  • Course subject Engineering
  • Areas of interest Engineering

Control Systems is the study of the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The concepts and tools discussed in this course can be used in a wide spectrum of engineering disciplines such as mechanical, electrical, aerospace, manufacturing, and biomedical engineering. The emphasis of this course will be on the basic theories and feedback controller design methods of linear time-invariant systems.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

  1. Demonstrate systematic understanding of the principles and consequences of feedback mechanisms in dynamical systems.
  2. Define and explain feedback and feedforward control architecture and discuss the importance of performance, robustness and stability in control design.
  3. Apply linearisation techniques to nonlinear systems and perform controllability and observability analysis to linear time-invariant systems.
  4. Design controllers using state-feedback and output-feedback and basic linear quadratic optimality in feedback design.
  5. Compute gain and phase margins from Bode diagrams and Nyquist plots and understand their implications in terms of robust stability.
  6. Design and implement feedback controllers for real-world dynamical systems.

Other Information

Professional Skills Mapping:

Mapping of Learning Outcomes to Assessment and Professional Competencies


Indicative Assessment

  1. Weekly problem set (15) [LO null]
  2. Lecture insight reports (10) [LO null]
  3. Laboratories (10) [LO null]
  4. Design project (25) [LO null]
  5. Final Exam (40) [LO null]

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Workload

12 x 2-hour lectures, 1 x 1-hour & 11 x 2-hour tutorials/computer labs/tutor consultation time.

Inherent Requirements

Information on inherent requirements for this course is currently not available.

Requisite and Incompatibility

To enrol in this course you must be studying Master of Engineering.

Prescribed Texts

Karl J. Åström and Richard M. Murray, Feedback Systems -- An Introduction for Scientists and Engineers, Princeton University Press, 2008.

Assumed Knowledge

Mathematics including differential equations, complex numbers and Laplace transforms, matrices, Physics including classical mechanics and electrical circuits.

Fees

Tuition fees are for the academic year indicated at the top of the page.  

Commonwealth Support (CSP) Students
If you have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). More information about your student contribution amount for each course at Fees

Student Contribution Band:
2
Unit value:
6 units

If you are a domestic graduate coursework student with a Domestic Tuition Fee (DTF) place or international student you will be required to pay course tuition fees (see below). Course tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Domestic fee paying students
Year Fee
2023 $4860
International fee paying students
Year Fee
2023 $6180
Note: Please note that fee information is for current year only.

Offerings, Dates and Class Summary Links

ANU utilises MyTimetable to enable students to view the timetable for their enrolled courses, browse, then self-allocate to small teaching activities / tutorials so they can better plan their time. Find out more on the Timetable webpage.

The list of offerings for future years is indicative only.
Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.

Second Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery Class Summary
5269 24 Jul 2023 31 Jul 2023 31 Aug 2023 27 Oct 2023 In Person N/A

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions