Join us on an exciting journey tailored for students who are passionate about pushing the boundaries of computing technology. The Bachelor of Advanced Computing (Research and Development) (Honours) program is designed to immerse you in a dynamic learning environment where you'll not only master advanced computing concepts but also engage deeply in hands-on research and development projects. From day one, you'll dive into a blend of challenging advanced coursework that covers everything from foundational principles to cutting-edge algorithms and software engineering techniques. Classes are interactive and designed to cultivate your critical thinking and problem-solving abilities, essential skills for tackling complex real-world challenges.
What sets the Bachelor of Advanced Computing (Research and Development) (Honours) program apart is its emphasis on research. You'll have the opportunity to work closely with renowned faculty members on groundbreaking research projects. This hands-on experience isn't just about learning theory—it's about applying what you've learned to solve real problems and contribute to advancements in computing. Within your degree program, you have the flexibility to learn and explore the range of computing offerings, and you can choose to complete a Computing Major or Specialisation if you want to study an area in more depth. Beyond the classroom, the program encourages interdisciplinary exploration. You'll have the flexibility to explore connections between computing and other fields like mathematics, biology, creative arts and social sciences. This interdisciplinary approach enriches your understanding and equips you with a broader perspective and adaptable skills that are highly sought after in today's tech-driven world.
As a Bachelor of Advanced Computing (Research and Development) (Honours) student, you'll graduate with a robust skill set and a portfolio of real-world projects that showcase your expertise. Whether your goal is to develop innovative software solutions, pursue advanced research opportunities, or lead technology initiatives, the ANU Bachelor of Advanced Computing (Research and Development) (Honours) program prepares you to excel in diverse career paths within the vibrant and evolving field of computing.
Maintaining the balance between our environment and human development is challenging. The future needs you to work on sustainable solutions to issues including increasing biodiversity loss, urbanisation and climate change.
The ANU Bachelor of Environment & Sustainability is a contemporary degree, covering environmental science, policy and social sciences, allowing you to address the complex challenges of sustainability by giving you a broad environmental education.
You’ll learn to link perspectives from the natural and social sciences throughout the degree and deepen knowledge from a selection of specialisations.
Find out more about the Bachelor of Environment & Sustainability, the degree structure, the university experience, career opportunities and student stories on our website.
Get the inside story on what it’s like to be an ANU student by visiting our student blog.
Career Options
ANU ranks among the world's very finest universities. Our nearly 100,000 alumni include political, business, government, and academic leaders around the world.
We have graduated remarkable people from every part of our continent, our region and all walks of life.
Employment Opportunities
Innovative solutions to many of the problems in society today will come from those working in R&D and are at the forefront of new product design and development as well as being a wealth and change generator. After graduation, students choose to become innovators and leaders in R&D roles in IT or other industries, government, academia, or by creating their own start-ups.
BACR&D students can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including IBM, Google, Microsoft, Intel, Atlassian, Price Waterhouse Coopers, Accenture, National Australia Bank, Deloitte, Reserve Bank of Australia and the Australian Signals Directorate.
Students graduating with AACRD have been accepted directly into PhD programs around the world including ANU.
Innovative solutions to many of the problems in society today will come from those working in R&D and are at the forefront of new product design and development as well as being a wealth and change generator. After graduation, students choose to become innovators and leaders in R&D roles in IT or other industries, government, academia, or by creating their own start-ups.
BACR&D students can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including IBM, Google, Microsoft, Intel, Atlassian, Price Waterhouse Coopers, Accenture, National Australia Bank, Deloitte, Reserve Bank of Australia and the Australian Signals Directorate.
Students graduating with AACRD have been accepted directly into PhD programs around the world including ANU.
Learning Outcomes
- Define and analyse complex problems, and design, implement and evaluate solutions that demonstrate an understanding of the systems context in which software is developed and operated including economic, social, historical, sustainability and ethical aspects
- Demonstrate an operational and theoretical understanding of the foundations of computer science including programming, algorithms, logic, architectures and data structures
- Illustrate an understanding of deep knowledge in at least one area of computer science
- Demonstrate a deep understanding of the fundamentals of research methodologies, including defining research problems, evaluating background readings, developing literature reviews, designing experiments, and effectively communicating results to a transdisciplinary audience.
- Proficiently apply research methods to the solution of contemporary research problems in computer science.
- Evaluate current understandings of environmental and sustainability sciences, and critically analyse a range of response strategies for sustainable resource management and development.
- Integrate and participate in transdisciplinary knowledge from relevant scientific areas and from policy into approaches designed to address complex contemporary environmental issues, in global, national and local contexts.
- Apply a range of written, oral and visual communication skills to effectively convey and discuss information about environmental science, sustainable development and resource management decisions and relevant policies across discipline.
- Engage with ongoing debates on environmental and sustainability issues, demonstrating an understanding of biophysical and socio-political and Indigenous knowledge.
Further Information
The Bachelor of Advanced Computing (Research & Development) is a four-year program that has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project-based, research-intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program.
The BAC(R&D) is not a professionally accredited degree, while the BAC is accredited by the Australian Computer Society (ACS).
Program Transfers
Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally, students would need to transfer into the program before the end of their second year.
Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College by visiting the College of Engineering, Computing and Cybernetics website.
The Bachelor of Advanced Computing (Research & Development) is a four-year program that has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project-based, research-intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program.
The BAC(R&D) is not a professionally accredited degree, while the BAC is accredited by the Australian Computer Society (ACS).
Program Transfers
Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally, students would need to transfer into the program before the end of their second year.
Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College by visiting the College of Engineering, Computing and Cybernetics website.
Admission Requirements
- ATAR:
- 98
- International Baccalaureate:
- 42
Pathways
Bachelor of Advanced Computing (Honours) is the pathway for students who meet the Maths pre-requisites but do not have the required score for direct entry into this program.
Eligible students should enrol in the Bachelor of Advanced Computing (Honours) complete the Advanced first-year courses and if they can maintain a High Distinction average in their first year, they may be approved to transfer into the R&D program in their second year.
Prerequisites
ACT: Mathematical Methods (Major)/Further Mathematics (Major)/Specialist Mathematics/Specialist Methods (Major)
NSW: HSC Mathematics Advanced or equivalent.
VIC: Mathematics Methods or equivalent
QLD: Mathematics Methods or equivalent
TAS: Mathematical methods/Mathematics Specialised/Mathematics 1 and II through U Tas/Both Mathematics 1 and II through UTAS/Both Advanced Calculus and Applications 1A and 1B through UTAS
SA / NT: Mathematical Methods or equivalent
WA: Mathematical Methods or equivalent
IB: Mathematics: Applications and Interpretations HL/Mathematics: Analysis and Approaches SL or HL
Adjustment Factors
Adjustment factors are combined with an applicant's secondary education results to determine their Selection Rank. ANU offers adjustment factors based on equity, diversity, and/or performance principles, such as for recognition of difficult circumstances that students face in their studies.
To be eligible for adjustment factors, you must have:
- achieved a Selection Rank of 70 or more before adjustment factors are applied
- if you have undertaken higher education, completed less than one year full-time equivalent (1.0 FTE) of a higher education program
- applied for an eligible ANU bachelor degree program
Please visit the ANU Adjustment Factors website for further information.
Indicative fees
Bachelor of Advanced Computing (Research and Development) (Honours) - Commonwealth Supported Place (CSP)
Bachelor of Environment and Sustainability - Commonwealth Supported Place (CSP)
For more information see: http://www.anu.edu.au/students/program-administration/costs-fees
- Annual indicative fee for international students
- $53,700.00
Scholarships
ANU offers a wide range of scholarships to students to assist with the cost of their studies.
Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are. Specific scholarship application process information is included in the relevant scholarship listing.
For further information see the Scholarships website.
Program Requirements
The Bachelor of Advanced Computing (Research and Development) (Honours) flexible double degree component requires completion of 144 units, of which:
A maximum of 48 units may come from completion of 1000-level courses
The 144 units must include:
78 units from completion of compulsory courses from the following list:
COMP1130 Programming as Problem Solving (Advanced) (6 units)
COMP1140 Structured Programming (Advanced) (6 units)
COMP1600 Foundations of Computing (6 units)
COMP2100 Software Construction (6 units)
COMP2300 Computer Architecture (6 units)
COMP2550 Computing R&D Methods (6 units)
COMP3600 Algorithms (6 units)
COMP3770 Individual Research Project which must be completed twice, in consecutive semesters (6+6 units)
COMP4550 Computing Research Project which must be completed twice, in consecutive semesters (12+12 units).
18 units from completion of courses from the following list:
MATH1005 Discrete Mathematical Models (6 units)
MATH1013 Mathematics and Applications 1 (6 units)
MATH1014 Mathematics and Applications 2 (6 units)
MATH1115 Advanced Mathematics and Applications 1 (6 units)
MATH1116 Advanced Mathematics and Applications 2 (6 units)
MATH2222 Introduction to Mathematical Thinking: Problem-Solving and Proofs (6 units)
STAT1003 Statistical Techniques (6 units)
STAT1008 Quantitative Research Methods (6 units)
24 units from the completion of 4000-level courses from the subject area COMP Computer Science
12 units of Transdisciplinary Problem-Solving tagged courses
12 units from completion of elective courses offered by ANU, which may include courses in the subject area COMP Computer Science
After the first four periods of enrolment students must achieve a minimum 75% Weighted Average Mark in Computing courses. Students who do not achieve a minimum 75% Weighted Average Mark will be transferred to the Bachelor of Advanced Computing (Honours).
To continue into the final year of the program students must have completed 144 units and achieved a minimum 80% Weighted Average Mark calculated from the courses that contribute to the final Honours grade calculation. Students who do not achieve this 80% Weighted Average Mark will be automatically transferred to the Bachelor of Advanced Computing (Honours) degree.
To graduate with the Bachelor of Advanced Computing (Research and Development) (Honours) students must achieve a minimum 80% final Honours mark. Students who do not achieve a minimum 80% final Honours mark will be transferred to the Bachelor of Advanced Computing (Honours) degree program prior to graduating.
Honours Calculation
COMP4801 Final Honours Grade will be used to record the Class of Honours and the Mark. The Honours Mark will be a weighted average percentage mark (APM) calculated by first calculating the average mark for 1000, 2000, 3000 and 4000 level courses. We denote these averages: A1, A2, A3, and A4 respectively. The averages are calculated based on all courses completed (including fails), that are listed in the program requirements, excluding non-COMP-coded electives, giving NCN and WN a nominal mark of zero. Finally, these averages are combined using the formula APM = (0.1 X A1) + (0.2 X A2) + (0.3 X A3) + (0.4 X A4).
The APM will then be used to determine the final grade according to the ANU Honours grading scale, found at http://www.anu.edu.au/students/program-administration/assessments-exams/grading-scale.
The Bachelor of Environment and Sustainability flexible double degree component requires the completion of 96 units, of which:
A maximum of 36 units may come from completion of 1000-level courses
A minimum of 30 units must come from completion of 3000-level courses from the 3000-level courses listed in the study requirements or specialisations
The 96 units must consist of:
48 units from completion of Environment and Sustainability courses from the following lists which must include:
36 units from completion of the following compulsory courses:
ENVS1003 Introduction to Environmental and Social Research (6 units)
ENVS1008 Fundamentals of Environment and Sustainability (6 units)
ENVS2011 Human Ecology (6 units)
ENVS2025 Indigenous Cultural and Natural Resource Management (6 units)
ENVS3028 Environmental Policy (6 units)
ENVS3040 Complex Environmental Problems in Action (6 units)
12 units from completion of courses from the following list:
ENVS2015 GIS and Spatial Analysis (6 units)
ENVS2018 Environmental Science Field School (6 units)
ENVS3007 Participatory Resource Management: Working with Communities and Stakeholders (6 units)
ENVS3902 Environmental Chemistry and Systems (6 units)
12 units from completion of foundational courses from the following list:
BIOL1003 Biology 1: Evolution, Ecology and Genetics (6 units)
CHEM1101 Chemistry 1 (6 units)
ENVS1001 Environment and Society: Geography of Sustainability (6 units)
ENVS1004 Australia's Environment (6 units)
EMSC1006 The Blue Planet: An Introduction to Earth System Science (6 units)
SCOM1001 Science Communication 1: Science and Public Awareness (6 units)
24 units from completion of one of the specialisations listed below:
Biodiversity and Forest: Science, Management and Policy
Sustainability and Future Climate: Science, Management and Policy
Land and Water: Science, Management and Policy
Agricultural Innovation
A maximum of 12 units from completion of 2000- or 3000- level courses from the subject area ENVS- Environmental Science not previously taken
Specialisations
Bachelor of Environment and Sustainability Specialisations
Bachelor of Advanced Computing (Research and Development) (Honours) Specialisations
Study Options
Year 1 | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | ||
Year 2 | COMP2100 Software Construction 6 units | COMP2550 Computing R&D Methods 6 units | COMP2300 Computer Architecture 6 units | |
COMP2120 Software Engineering 6 units | COMP2310 Systems, Networks, and Concurrency 6 units | COMP2560 | ||
Year 3 | COMP2420 | Computing Research Specialisation 6 units | ||
COMP3600 Algorithms 6 units | Computing Research Specialisation 6 units | |||
Year 4 | COMP3770 Computing Research Project (R&D) 6 units | Computing Research Specialisation 6 units | ||
COMP3770 Computing Research Project (R&D) 6 units | Computing Research Specialisation 6 units | |||
Year 5 | COMP4550 Computing Research Project 12 units | COMP4550 | ||
COMP4550 Computing Research Project 12 units | COMP4550 |
Back to the Bachelor of Advanced Computing (Research and Development) (Honours) page
The Bachelor of Advanced Computing (Research & Development) AACRD can be taken as a part of many double degrees. In a double degree you may not be able to complete a major in a computing discipline depending on your other degree. For help on planning your double degree follow the advice on the College Student Services Website.
Single degree
The single degree offers 60 units (ten courses) of electives that can be taken from additional computing courses enabling you to complete a Computing major, minor, or additional specialisation), or a major or minor from another College.
There are 12 units of elective courses in the degree that can be used to meet your Transdisciplinary Problem-Solving (TD) requirements with any ANU TD tagged courses (including COMP). By following your degree rules you will meet your TD program requirements.
Double degree
- The Double degree allows 12 units of electives to allow you to explore subjects across ANU.
- There are 12 units of elective courses in the degree that can be used to meet your 12 units
- Transdisciplinary Problem-Solving requirements across the Double degree. By following your degree rules you will meet your TD program requirements. ·
- You can find your double degree with BAC(R&D) from Program and Courses
About this degree
- Typically you will study 4 courses per semester (total of 24 units) as a
full time student giving you a total of 24 courses across your whole
degree.
- The degree comprises compulsory requirements, Computing electives, research and development projects, and University electives.
- You can choose to complete one, or more, of the AACOM Specialisations, BCOMP majors or HCCC Minor using your computing and University electives. Talk to the College Student Services about how to plan your degree to include any of these options after your first semester.
24-unit Specialisations:
§ Human-Centred and Creative Computing
§ Machine Learning § Systems and Architecture
§ Theoretical Computer Science
48-unit Majors
§ HCCC-MAJ Human-Centred and Creative Computing
§ INFS-MAJ Information Systems
§ INSY-MAJ Intelligent SystemsFollow the steps here: Declaring majors, minors & specialisations to declare your Specialisation and any majors you wish to take, noting the dates this can be done. You do not need to declare any majors or Specialisations until your second or third year but note that you need to plan to complete the required courses to meet their requirements.
Enrolment Status
While it is possible to enrol in fewer courses per semester, which is called studying part-time, it will take you longer to finish your program and get your degree. If you are an international student, you must always be full-time.
· You cannot study more than four courses (24 units) per semester, eight for the year without permission
Important things to keep in mind when choosing your 1000-level courses
- Students doing double degrees with business degrees do STAT1008 in place of STAT1003 and take an additional Computing elective.
- You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC(R&D) half of the double degree.
Study Options
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | University Elective |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | University Elective |
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | Other Degree course |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | Other Degree course |
Academic Advice
The Study Options below are a guide, depending on your personal circumstances and interests you may need to move Electives and courses into different semesters.
If you want to talk to someone before enrolling or have your study plan reviewed review the information on Getting Started in your Study Program and then contact the College Student Enquiries team student.css@anu.edu.au
Back to the Bachelor of Environment and Sustainability page
Are you concerned about the state of the environment and want to be part of the solution?
With a strong emphasis on getting outside and learning in the field, the ANU Bachelor of Environment and Sustainability will give you a broad environmental education, teaching you to link the natural and social sciences with their applications in environmental conservation and sustainable resource management.
If you enjoy the great outdoors and are passionate about keeping them pristine for future generations, this degree will teach you to be an effective environmental scientist and natural resource manager, helping you to meet the sustainability challenges and opportunities facing us this century.
Note: Advice on this page is indicative only. Where a number of courses has been identified, it assumes that all of your courses are 6-units. If you take a course worth 12-units please refer to the unit-load in the study requirements in the program orders.
This degree can be taken as a single degree or combined with another degree in a Flexible Double Degree (FDD).When the Bachelor of Science is combined with another undergraduate degree through a Flexible Double Degree, 48 units of ANU electives units are replaced with the core requirements of the other degree and the total program duration is expanded to 192 units (4 years Full-Time) or 240 units (5 years Full-Time) depending on the duration of the other program.
Semester 2 commencers
Please note that if you are commencing your studies in Semester 2 there may be restrictions on the courses available for enrolment. If you have concerns, please contact students.cos@anu.edu.au. Advisory sessions will be held the week before semester commences.
Single degree
The Bachelor of Environment and Sustainability 144 units (24 courses), including:
- A maximum of 10 x 1000-level courses
- A minimum of 5 x 3000-level courses from courses listed in the core requirements and specialisations in the BENSU
- 6 x compulsory courses
- A minimum of 2 transdisciplinary problem-solving (TD) courses (embedded in the course requirements)
- 2 x courses chosen from ENVS2015. ENVS2018, ENVS3007, ENVS3902
- 2 x courses from the foundational list
- 1 x specialisation listed in the BENSU
- A maximum of 10 courses from the lists in the BENSU not previously taken or other ANU electives
Double degree
The total number of overall units in a Flexible Double Degree (FDD) depends on the FDD combination eg.
- 4050: 192 units
- 4350, 4569, 4750: 240 units
Of which a minimum of 2 courses must be tagged as transdisciplinary problem-solving. These courses may be taken in either component of the FDD.
The Bachelor of Environment and Sustainability component of an FDD requires 96 units, including:
- A maximum of 6 x 1000-level courses
- A minimum of 5 x 3000-level courses from courses listed in the core requirements and specialisations in the BENSU
- 6 x compulsory courses
- A minimum of 2 transdisciplinary problem-solving (TD) courses (embedded in the course requirements)
- 2 x courses chosen from ENVS2015. ENVS2018, ENVS3007, ENVS3902
- 2 x courses from the foundational list
- 1 x specialisation listed in the BENSU
- A maximum of 2 courses from the lists in the BENSU not previously taken or other ANU electives
About this degree
Transdisciplinary Problem-Solving courses
In this degree, you will
have to complete 12 units of courses flagged as Transdisciplinary
Problem-Solving (TD). TD courses can be identified using the Programs and
Courses search engine.
In the Bachelor of Environment and Sustainability, this requirement will be satisfied
through ENVS1008 and ENVS3040.
Enrolment Status
Duration
The Bachelor of Environment and Sustainability typically takes three years to complete on a full-time basis. Students will usually take 24-units (four six-unit courses) each semester and there are two semesters each year. One course is typically worth six-units.
In total, students need to complete 144 units of study towards the Bachelor of Environment and Sustainability. This will be 24 courses if all courses are worth six-units, but may be fewer if one or more courses of 12-units or more are taken.
- If you combine the Bachelor of Environment and Sustainability with another degree in a Flexible Double Degree, you will need to complete a total of 192 units (32 six-unit courses) or 240 units (40 six-unit courses) depending on the combination. This will typically take four years for a 192-unit degree or five years for a 240-unit degree .
Domestic students may choose to enrol in fewer than 24-units in any semester or half-year study period. Students studying 18 or more units in a half year (January – June or July – December) are considered full-time. Students studying less than this are considered part-time.
If you take fewer than 24-units in any half year period, then your degree is likely to take longer than three years to complete.
International students on a student visa are required to enrol in a
full-time study load of 24-units in each half year study period (Summer,
Semester 1, Autumn or Winter, Semester 2, Spring) unless they have been
approved for Reduced Study Load or program leave.
Maximum time for completion
- The maximum period for completion of the single Bachelor of Environment and Sustainability degree is ten years from the date of first enrolment in the program. This ten years includes any periods of leave.
- The maximum period for completion of a flexible double degree is ten years for a 192-unit degree or 11 years for a 240-unit degree from the date of first enrolment in the program. The maximum period includes periods of leave.
A transfer of credit (status) from previous studies will
reduce the total amount of time remaining to complete the balance of your degree.
When you are assessed for credit, you will be notified of the new maximum end
date for your degree in your credit offer.
Important things to keep in mind when choosing your 1000-level courses
There are 2 compulsory 1000 level courses you must take in your first year:
You will also need to take 2 x courses from the foundational course list. Please note:
- BIOL1003, CHEM1101, ENVS1001, EMSC1006 and SCOM1001 are all offered in Semester 1.
- ENVS1004 is offered in Semester 2.
You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your Environment and Sustainability half of the double degree.
Electives
Remember you can choose up to 10 courses from another ANU College if you are undertaking the single Bachelor of Environment and Sustainability program.You can try a range of courses or take a major or minor in a non-environment subject, such as philosophy, history or computing. The choice is yours.
How do I use my electives?
Electives are courses that provide freedom for you to select subjects that align to your personal interests and career aspirations in a more individualised way than is possible through general major or degree requirements. An ANU elective is a course that you can select without restriction, beyond the global requirements of your program (e.g. limits on 1000-level courses, etc).
We also recommend holding some ANU electives in reserve to keep other opportunities open, such as international exchange, internships, and meeting the transdisciplinary requirements of your degree.Study Options
Bachelor of Environment and Sustainability – single degree
This is a typical study pattern for the first year of a student undertaking a Bachelor of Environment and Sustainability.Study Options
Year 1 48 units | ENVS1003 Introduction to Environmental and Social Research 6 units | ENVS1008 Fundamentals of Environment and Sustainability 6 units | 1000 level BENSU foundational course list 6 units | BENSU or ANU elective course 6 units |
1000 level BENSU foundational course list 6 units | BENSU or ANU elective course 6 units | BENSU or ANU elective course 6 units | BENSU or ANU elective course 6 units |
Bachelor of Environment and Sustainability - double degree
This is a typical study pattern for the first year of a student undertaking a Bachelor of Environment and Sustainability with another three year degree, such as the Bachelor of Arts.Study Options
Year 1 48 units | ENVS1003 Introduction to Environmental and Social Research 6 units | ENVS1008 Fundamentals of Environment and Sustainability 6 units | Degree B course 6 units | Degree B course 6 units |
BENSU or ANU elective course 6 units | ANU elective course 6 units | Degree B course 6 units | Degree B course 6 units |
Academic Advice
For further information, you can:
- Visit the Fenner School of Environment & Society webpage here, or
- Download the Science first year course guide available here, or
- View the information at our New commencers & first year students page, or
- Email us at students.cos@anu.edu.au, or
- Come and talk to someone - you can make an appointment with an academic advisor here.