• Offered by Mathematical Sciences Institute
• ANU College ANU Joint Colleges of Science
• Course subject Mathematics
• Areas of interest Mathematics
• Course convener
• AsPr James Borger
• Mode of delivery In Person
• Co-taught Course
• Offered in First Semester 2021
Advanced Algebra 2: Field extensions and Galois Theory (MATH3345)

This course has been adjusted for remote participation in Sem 1 2021 due to COVID-19 restrictions. On-campus activities will also be available.

Just as there is a formula for solving a quadratic equation, there are similar formulae for solving the general cubic and quartic. Galois theory provides a solution to the corresponding problem for quintics --- there is no such formula in this case! Galois theory also enables us to prove (despite regular claims to the contrary) that there is no ruler and compass construction for trisecting an angle. More broadly, the purpose of Galois theory is to study polynomials at a deep level by using symmetries between the roots. This is a pervasive theme in modern mathematics, and Galois theory is traditionally where one first encounters it.

Topics to be covered include:

Galois Theory - fields, field extensions, normal extensions, separable extensions. Revision of group theory, abelian and soluble groups.The main theorem of Galois theory.Solubility of equations by radicals. Finite fields. Cyclotomic fields.

Note: This is an HPC. It emphasises mathematical rigour and proof and continues the development of modern analysis from an abstract viewpoint.

## Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

On satisfying the requirements of this course, students will have the knowledge and skills to:

1. Explain the fundamental concepts of field extensions and Galois theory and their role in modern mathematics and applied contexts
2. Demonstrate accurate and efficient use of field extensions and Galois theory
3. Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from field extensions and Galois theory
4. Apply problem-solving using field extensions and Galois theory applied to diverse situations in physics, engineering and other mathematical contexts.

## Indicative Assessment

Assessment will be based on:
• Assignments 50%
• Mid semester 20%
• Final exam 30%

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Three lectures per week, workshops by arrangement.

## Requisite and Incompatibility

To enrol in this course you must have successfully completed either MATH2322 or MATH3104 with a mark of 60 and above.

## Fees

Tuition fees are for the academic year indicated at the top of the page.

Commonwealth Support (CSP) Students
If you have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). More information about your student contribution amount for each course at Fees

Student Contribution Band:
1
Unit value:
6 units

If you are a domestic graduate coursework student with a Domestic Tuition Fee (DTF) place or international student you will be required to pay course tuition fees (see below). Course tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500

## Course fees

Domestic fee paying students
Year Fee
2021 \$4110
International fee paying students
Year Fee
2021 \$5880
Note: Please note that fee information is for current year only.

## Offerings, Dates and Class Summary Links

The list of offerings for future years is indicative only.
Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.

### First Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery Class Summary
3236 22 Feb 2021 01 Mar 2021 31 Mar 2021 28 May 2021 In Person View