• Offered by Mathematical Sciences Institute
  • ANU College ANU Joint Colleges of Science
  • Classification Advanced
  • Course subject Mathematics
  • Areas of interest Digital Arts, Computer Science, Mathematics, Physics, Algorithms and Data
  • Academic career Postgraduate
  • Course convener
    • Prof Michael Barnsley
  • Mode of delivery In Person
  • Co-taught Course MATH3062
  • Offered in First Semester 2018
    See Future Offerings

This course introduces basic mathematical techniques of fractal geometry and dynamical systems, aimed towards understanding and modeling natural shapes and forms from leaves to coastlines. Basic topological and geometrical language to describe and model rough, ("fractal") objects is developed. Relationships between fractal geometry and discrete dynamical systems and chaotic dynamics are emphasized, including symbolic dynamics, stability of attractors, bifurcations and routes to chaos. 

The key ideas are introduced in an intuitive way. The key definitions and theorems are stated but few proofs of theorems are given. However, graduate students will have to attend additional lectures which will provide rigorous mathematical foundations and will be assessed separately from undergraduate students.

In computer laboratory sessions students learn how the mathematical results can be applied in practice by running and modifying simple Python programs. 

Learning Outcomes

Upon successful completion of this course, students will have the knowledge and skills to:

1. Be able to construct and analyse a wide range of fractals.

2. Be able to analyse 1-D dynamical systems in terms of attractors, basins and cascades of bifurcations. 

3. Understand how to use fractal geometry to model rough data and natural shapes. 

4. Be familiar with Hutchinson theory of deterministic fractal sets and measures, and be able to prove basic theorems and solve problems in the area. 

5. Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from fractal geometry. 

6. Ability to use their deep knowledge and understanding of fractal geometry to formulate responses to complex concrete and abstract problems. 

7. Ability to communicate their understanding and skills in fractal geometry with colleagues and non-experts and apply their knowledge in an occupational situation. 

Indicative Assessment

  • Projects 10% (LO 1-4)
  • Assignments 30% (LO 1-4)
  • In-class Quizzes 20% (LO 1-4)
  • Final exam - 40% of total mark (LO 1-4)

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.


Three lectures per week and regular tutorials/workshops

Requisite and Incompatibility

Incompatible with MATH3062

You will need to contact the Mathematical Sciences Institute to request a permission code to enrol in this course.

Prescribed Texts

Fractals Everywhere, by Michael F. Barnsley, Third Edition (2012,  Dover).

Fractal Geometry - Mathematical Foundations and Applications, Kenneth Falconer (Wiley,2000)


Tuition fees are for the academic year indicated at the top of the page.  

If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Student Contribution Band:
Band 2
Unit value:
6 units

If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

6.00 0.12500
Domestic fee paying students
Year Fee
2018 $3660
International fee paying students
Year Fee
2018 $5160
Note: Please note that fee information is for current year only.

Offerings and Dates

The list of offerings for future years is indicative only

First Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery
5034 19 Feb 2018 27 Feb 2018 31 Mar 2018 25 May 2018 In Person

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions