• Offered by RS Electrical, Energy and Materials Engineering
  • ANU College ANU College of Engineering and Computer Science
  • Course subject Engineering
  • Areas of interest Engineering
  • Academic career UGRD
  • Course convener
    • Dr Usama Elahi
  • Mode of delivery In Person
  • Co-taught Course
  • Offered in Second Semester 2020
    See Future Offerings

Power systems and power electronics devices are fundamental to the transmission, transformation and use of electrical energy that underpins much of modern society. This course provides a detailed introduction to the theoretical principles and operating characteristics of power systems, electric machines, and electrical energy conversion. By combining several topics that are often covered by separate electrical engineering courses, students will gain an integrated understanding and advanced technical knowledge of the power systems and power electronics fields. Theoretical material will be supplemented with software and hardware labs to provide students with the practical skills and knowledge to model, analyse and design various power systems and power electronic components.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

  1. Use electrical physics concepts to understand and explain the properties and operation of power systems and power electronics components, and apply circuit analysis techniques to interpret, analyse and evaluate three-phase circuits, power systems and associated components.
  2. Formulate and model power load flow problems, determine effective solutions to the formulated problems, and critically assess the performance of the determined solutions.
  3. Apply the theory and operating principles of electric machines to explain and evaluate their properties and characteristics when integrated into power systems.
  4. Apply advanced knowledge and analysis techniques to design and critically assess key aspects of power conversion.
  5. Research, design, and simulate a complete power system and/or power electronics application based on a complex set of user requirements.
  6. Appreciate the importance of stability, reliability and safety of power systems from the perspective of consumers and other stakeholders and identify and discuss the recent developments and emerging challenges facing modern power systems and power electronics devices.

Indicative Assessment

  1. Quizzes (10%); (10) [LO null]
  2. Labs (30%); (30) [LO null]
  3. Major Project (20%); (20) [LO null]
  4. Final Exam (40%) (40) [LO null]

The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Workload

Eight two-hour tutorials (16 hours) Two two-hour computer labs (4 hours) Four three-hour hardware labs (HLAB2 has two sessions) (15 hours

Inherent Requirements

Not applicable

Requisite and Incompatibility

To enrol in this course you must have completed ENGN2218. Incompatible with ENGN6625

Prescribed Texts

N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, Third Edition, Wiley, 2003.

Minors

Fees

Tuition fees are for the academic year indicated at the top of the page.  

If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Tuition fees are indexed annually. Further information for domestic and international students about tuition and other fees can be found at Fees.

Student Contribution Band:
2
Unit value:
6 units

If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Domestic fee paying students
Year Fee
2020 $4320
International fee paying students
Year Fee
2020 $5760
Note: Please note that fee information is for current year only.

Offerings, Dates and Class Summary Links

The list of offerings for future years is indicative only.
Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.

Second Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery Class Summary
9514 27 Jul 2020 03 Aug 2020 31 Aug 2020 30 Oct 2020 In Person N/A

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions