• Offered by Physics Education Centre
  • ANU College ANU Joint Colleges of Science
  • Course subject Physics
  • Areas of interest Physics
  • Academic career UGRD
  • Course convener
    • Dr Benjamin Buchler
  • Mode of delivery In Person
  • Offered in Second Semester 2014
    See Future Offerings

This course covers aspects of physics that can all be described through an understanding of oscillations and waves.  We start with a description of harmonic motion and learn how simple models of single and coupled oscillators can be used to find useful descriptions of many physical systems.  We also introduce the Lagrangian as a tool for finding equations that can model complicated mechanical systems. Coupled oscillations are generalised into waves and we will discuss the abundance of waves in physics. Fourier theory is then introduced.  This powerful concept allows the treatment of vibrations and waves in the frequency domain, in turn allowing analysis of complicated systems of waves where the behaviour may depend of the frequency of the wave.  In this way we discover wave dispersion and its applications.  Finally, particular attention is paid to light waves.  We cover aspects of optics including polarisation, interference, interferometry and diffraction. The course material is supported throughout by examples taken from recent research on mechanical systems, nano-optics, atomic physics, biological systems and laser physics. Computer models provide an opportunity to explore various concepts presented in lectures, including coupled linear oscillators and chaotic dynamics in driven non-linear oscillators. Complementing the lectures, this course contains a laboratory component.  Some experiments are essentially qualitative and support lecture material, while others allow development of important skills in quantitative experimental physics.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

On satisfying the requirements of this course, students will have the knowledge and skills to:

  1. Understand systems of single and multiple harmonic oscillators and appreciate the role of driving, damping and coupling of harmonic systems.
  2. Identify systems that can be understood using simple models of harmonic oscillation and thereby understand a range of physical systems with a single unified model.
  3. Understand the role of the wave equation and appreciate the universal nature of wave motion in a range of physical systems.
  4. Understand optical phenomena such as polarisation, birefringence, interference and diffraction in terms of the wave model.
  5. Understand a diffraction and imaging in terms of Fourier optics and gain physical and intuitive insight in a range of physics via the spatial Fourier Transform.
  6. Through the lab course, understand the principles of measurement and error analysis and develop skills in experimental design.




Indicative Assessment

Assessment will be based on:

  • Four assignments  (20%; LO 1-5)
  • Laboratory work (30%; LO 6)
  • Final exam (50%; LO 1-5)




The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.

Workload

Approximately twenty-four lectures, up to twelve tutorials and twenty-four hours of laboratory work, plus individual study.

Requisite and Incompatibility

To enrol in this course you must have completed PHYS1101 and PHYS1201 and MATH1013 and MATH1014. You are not able to enrol in this course if you have previously completed PHYS3035.

Majors

Minors

Specialisations

Fees

Tuition fees are for the academic year indicated at the top of the page.  

If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Students continuing in their current program of study will have their tuition fees indexed annually from the year in which you commenced your program. Further information for domestic and international students about tuition and other fees can be found at Fees.

Student Contribution Band:
2
Unit value:
6 units

If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

Units EFTSL
6.00 0.12500
Domestic fee paying students
Year Fee
1994-2003 $1650
2004 $1926
2005 $2298
2006 $2520
2007 $2520
2008 $2916
2009 $2916
2010 $2916
2011 $2946
2012 $2946
2013 $2946
2014 $2946
International fee paying students
Year Fee
1994-2003 $3390
2004 $3450
2005 $3450
2006 $3618
2007 $3618
2008 $3618
2009 $3618
2010 $3750
2011 $3756
2012 $3756
2013 $3756
2014 $3762
Note: Please note that fee information is for current year only.

Offerings, Dates and Class Summary Links

The list of offerings for future years is indicative only.
Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.

Second Semester

Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery Class Summary
7236 21 Jul 2014 01 Aug 2014 31 Aug 2014 30 Oct 2014 In Person N/A

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions