• Offered by Physics Education Centre
  • ANU College ANU Joint Colleges of Science
  • Course subject Physics
  • Areas of interest Physics
  • Academic career UGRD
  • Course convener
    • Dr Franklin Mills
  • Mode of delivery In Person
  • Offered in First Semester 2014
    See Future Offerings

HPO option is available for this course.

Thermal physics deals with large numbers of particles, anything big enough to see with a conventional microscope. From understanding the greenhouse effect to the blackbody radiation left over from the Big Bang, no other physical theory is used more widely through out science.

This course begins with classical thermodynamics to introduce the fundamental concepts of temperature, energy, and entropy.  These concepts are then used to explore free energy, heat, and the fundamental behaviour of heat engines and refrigerators.  The physical and mathematical bases of statistical mechanics, in which the laws of statistics are used to make the connection between the quantum behaviour of 1 atom and the behaviour of bulk matter made up of 10^23 atoms, are then introduced.  This leads to the statistical physics concepts of temperature, entropy, Boltzmann and Gibbs factors, partition functions, and distribution functions.  These concepts are applied to both classical and quantum systems, including phase transformations, blackbody radiation, and Fermi gases.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

On satisfying the requirements of this course, students will have the knowledge and skills to:

1. Identify and describe the statistical nature of concepts and laws in thermodynamics, in particular: entropy, temperature, chemical potential, Free energies, partition functions.
2. Use the statistical physics methods, such as Boltzmann distribution, Gibbs distribution, Fermi-Dirac and Bose-Einstein distributions to solve problems in some physical systems.
3. Apply the concepts and principles of black-body radiation to analyze radiation phenomena in thermodynamic systems.
4. Apply the concepts and laws of thermodynamics to solve problems in thermodynamic systems such as gases, heat engines and refrigerators etc.
5. Analyze phase equilibrium condition and identify types of phase transitions of physical systems.
6. Make connections between applications of general statistical theory in various branches of physics.
7. Design, set up, and carry out experiments; analyse data recognising and accounting for errors; and compare with theoretical predictions.

Indicative Assessment

Assessment will be based on:

• Weekly problem sheets and/or quizzes to assess abilities to analyse problems, identify approaches to solutions, and apply the concepts and mathematical formalisms of thermal physics (25%; LO 1-6)

• An extended research assignment resulting in a paper and a presentation, providing an opportunity to focus on a chosen aspect of thermal physics (such as a historically crucial experiment, competing interpretations of relevant theories, or a current research problem), thus allowing students to gain a deeper appreciation of the structure and applications of thermal physics (20%; LO 1-6)

• Laboratory component to evaluate understanding of the significance of particular experimental results and the ability to integrate theoretical and experimental work (20%; LO 2, 3, 4, 7)

• Final exam (35%; LO 1-6)

Assessment of the HPO will be based on problem sets and an essay.


Physics and Theoretical Physics and Earth Physics and Astronomy and Astrophysics


    The ANU uses Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. While the use of Turnitin is not mandatory, the ANU highly recommends Turnitin is used by both teaching staff and students. For additional information regarding Turnitin please visit the ANU Online website.


    A total of approximately twenty-eight lectures and thirty hours of tutorials and laboratory work. 

    Requisite and Incompatibility

    To enrol in this course you must have completed PHYS1001 or PHYS1101 or PHYS1201 alternatively completion of ENGN1214 and ENGN1226.

    Assumed Knowledge

    It's reccommended mathematics to at least the standard of MATH1013 & 1014 (ENGN1212 & 1222). Familiarity with syllabus content of MATH2305 or 2405 or 2023 will be assumed.



    Tuition fees are for the academic year indicated at the top of the page.  

    If you are a domestic graduate coursework or international student you will be required to pay tuition fees. Students continuing in their current program of study will have their tuition fees indexed annually from the year in which you commenced your program. Further information for domestic and international students about tuition and other fees can be found at Fees.

    Student Contribution Band:
    Unit value:
    6 units

    If you are an undergraduate student and have been offered a Commonwealth supported place, your fees are set by the Australian Government for each course. At ANU 1 EFTSL is 48 units (normally 8 x 6-unit courses). You can find your student contribution amount for each course at Fees.  Where there is a unit range displayed for this course, not all unit options below may be available.

    Units EFTSL
    6.00 0.12500
    Domestic fee paying students
    Year Fee Description
    1994-2003 $1650
    2014 $2946
    2013 $2946
    2012 $2946
    2011 $2946
    2010 $2916
    2009 $2916
    2008 $2916
    2007 $2520
    2006 $2520
    2005 $2298
    2004 $1926
    International fee paying students
    Year Fee
    1994-2003 $3390
    2014 $3762
    2013 $3756
    2012 $3756
    2011 $3756
    2010 $3750
    2009 $3618
    2008 $3618
    2007 $3618
    2006 $3618
    2005 $3450
    2004 $3450
    Note: Please note that fee information is for current year only.

    Offerings, Dates and Class Summary Links

    ANU utilises MyTimetable to enable students to view the timetable for their enrolled courses, browse, then self-allocate to small teaching activities / tutorials so they can better plan their time. Find out more on the Timetable webpage.

    The list of offerings for future years is indicative only.
    Class summaries, if available, can be accessed by clicking on the View link for the relevant class number.

    First Semester

    Class number Class start date Last day to enrol Census date Class end date Mode Of Delivery Class Summary
    3244 17 Feb 2014 07 Mar 2014 31 Mar 2014 30 May 2014 In Person N/A

    Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions