single degree

Master of Engineering in Photonics

A single two year graduate award offered by the ANU College of Engineering and Computer Science

  • Length 2 year full-time
  • Minimum 96 Units
  • Length 2 year full-time
  • Minimum 96 Units

Program Requirements

The Master of Engineering in Photonics requires the completion of 96 units, which must consist of:


78 units from completion of the following compulsory courses:

ENGN6250 Professional Practice 1

ENGN6512 Optical Physics

ENGN6513 Fibre Optics Communication Systems

ENGN6613 Photonic Sensing Systems

ENGN8100 Introduction to Systems Engineering

ENGN8120 Systems Modelling

ENGN8260 Professional Practice 2

PHYS8014 Photonics in Biotechnology and Nanotechnology

PHYS8015 Photonics Laboratory

PHYS8016 Photonics Advanced Topics

PHYS8017 Integrated Optics and Optoelectronics

PHYS8170 Research Project in Photonics


A minimum of 6 units from completion of courses from the following list:

ENGN6334 Semiconductors

ENGN6524 Photovoltaic Technologies

ENGN6626 Digital Communications

PHYS3035 Fourier Systems and Optics


A maximum of 12 units from completion of elective courses offered by ANU


Study Options

Year 1 ENGN8100 Introduction to Systems Engineering 6 units ENGN6250 Professional Practice 1 6 units ENGN6513 Fibre Optics Communication Systems 6 units ENGN6512 Optical Physics 6 units
ENGN8120 Systems Modelling 6 units ENGN6613 Photonic Sensing Systems 6 units Recommended technical elective 6 units
Year 2 48 units PHYS8015 Photonics Laboratory 6 units PHYS8014 Photonics in Biotechnology and Nanotechnology 6 units PHYS8170 Research Project in Photonics 6 to 12 units PHYS8170 Research Project in Photonics 6 to 12 units
PHYS8016 Photonics Advanced Topics 6 units PHYS8017 Optoelectronics and Integrated Optics 6 units University Elective 6 units 6 units University Elective course 6 units

Admission Requirements

A Bachelor degree or international equivalent in a cognate discipline with a minimum GPA of 5.0/7.0

Cognate Disciplines

Electrical Engineering, Electronic Engineering, Optoelectronic Engineering, Physics

English Language Requirements

All applicants must meet the University’s English Language Admission Requirements for Students.

Assessment of Qualifications

Unless otherwise indicated, ANU will accept all Australian Qualifications Framework (AQF) qualifications or international equivalents that meet or exceed the published admission requirements of our programs, provided all other admission requirements are also met. Where an applicant has more than one completed tertiary qualification, ANU will base assessment on the qualification that best meets the admission requirements for the program. Find out more about the Australian Qualifications Framework:

ANU uses a 7-point Grade Point Average (GPA) scale. All qualifications submitted for admission at ANU will be converted to this common scale, which will determine if an applicant meets our published admission requirements. Find out more about how a 7-point GPA is calculated for Australian universities:

Unless otherwise indicated, where an applicant has more than one completed tertiary qualification, ANU will calculate the GPA for each qualification separately. ANU will base assessment on the best GPA of all completed tertiary qualifications of the same level or higher.

Annual indicative fee for domestic students

For more information see:

Annual indicative fee for international students

For further information on International Tuition Fees see:


ANU offers a wide range of scholarships to students to assist with the cost of their studies.

Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are.  Specific scholarship application process information is included in the relevant scholarship listing.

For further information see the Scholarships website.

This two-year master qualification provides students with specialized knowledge and professional engineering skills to prepare them for a career in the rapidly-growing field of photonics and optoelectronics. Photonics professionals work across a wide range of industries including research and development, telecommunications, sensing and remote detection and biomedical diagnostics. This program builds on ANU’s interdisciplinary engineering focus and research expertise to give students the required skills to address complex multi-disciplinary problems, while at the same time providing advanced technical knowledge in photonics.

The program includes specialized courses in optical physics, fibre optic communications, optical sensing, biophotonics, optical instrumentation for astronomy, and photovoltaics.  Students also have the opportunity to select electives from across the University.

Career Options

Graduates from ANU have been rated as Australia's most employable graduates and among the most sought after by employers worldwide.

The latest Global Employability University Ranking, published by the Times Higher Education, rated ANU as Australia's top university for getting a job for the fourth year in a row.

Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

  1. Professionally apply systematic engineering methods to address complex, multi-disciplinary real-world engineering problems related to photonic and optoelectronic systems.
  2. Proficiently apply advanced, integrated technical knowledge in photonics and the underpinning sciences and scientific methods.
  3. Identify and critically evaluate current developments and emerging trends within the photonics sector.
  4. Understand the contextual factors that influence professional engineering practice, and identify the potential societal, ethical, and environmental impact of engineering activities.
  5. Communicate effectively with colleagues, other engineering professionals and the broader community employing a range of communication tools.
  6. Engage in independent investigation, critical reflection and lifelong learning to continue to practice at the forefront of the discipline.
  7. Work effectively and proactively within cross-cultural, multi-disciplinary teams, demonstrating autonomy, ethical conduct, expert judgement, adaptability and responsibility to achieve engineering outcomes at a high standard.

Further Information

New students should read the document found here for course advice.
Back to the top

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions