If you want to explore the cutting edge of research in computing and gain skills that will enable you to development software that tackles complex problems then you are looking at the right degree.
This is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology revolution. It also is a great pathway to a PhD.
As a degree accredited by the Australian Computer Society you will not only learn advanced computing techniques and have the opportunity to complete a unique specialisation, but also develop exceptional professional skills including communication and teamwork.
You’ll work alongside distinguished researchers at ANU and pursue research projects in your own area of interest.
While some of our students are developing code which controls unmanned aerial vehicles, others are busy writing algorithms to mine through Petabytes of data. If mastering challenging projects is your thing, the ANU Bachelor of Advanced Computing (Research and Development) can launch you into a spectacular career
What makes the human brain tick?
Find out with the Bachelor of Science (Psychology), which provides you with a great base in six different areas of psychology: developmental, social, personality, methods, cognition and biological.
In your later year courses, you’ll apply this knowledge and your skills in more specialised areas such as neuroscience, counselling, health and organisational (business) psychology.
Once you’ve completed your third year, you can apply to undertake an Honours year and pursue further postgraduate study. This will allow you to practice as a clinical psychologist.
Find out more about psychology, the degree structure, the university experience, career opportunities and student stories on our website.
Get the inside story on what it’s like to be an ANU student by visiting our student blog.
Career Options
Graduates from ANU have been rated as Australia's most employable graduates and among the most sought after by employers worldwide.
The latest Global Employability University Ranking, published by the Times Higher Education, rated ANU as Australia's top university for getting a job for the fourth year in a row.
Employment Opportunities
Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.
They can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Computer Engineer
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including:
- IBM
- Microsoft
- Yahoo
- Intel
- Price Waterhouse Coopers
- Accenture Australia
- Bloomberg
- National Australia Bank
- Citigroup
- Deloitte
- Unisys
- Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)
Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.
They can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Computer Engineer
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including:
- IBM
- Microsoft
- Yahoo
- Intel
- Price Waterhouse Coopers
- Accenture Australia
- Bloomberg
- National Australia Bank
- Citigroup
- Deloitte
- Unisys
- Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)
Learning Outcomes
Define and analyse complex problems, and design, implement and evaluate solutions that demonstrate an understanding of the systems context in which software is developed and operated including economic, social, historical, sustainability and ethical aspects
Demonstrate an operational and theoretical understanding of the foundations of computer science including programming, algorithms, logic, architectures and data structures
Recognise connections and recurring themes, including abstraction and complexity, across the discipline
Adapt to new environments and technologies, and to innovate
Demonstrate an understanding of deep knowledge in at least one area of computer science
Communicate complex concepts effectively with diverse audiences using a range of modalities
Work effectively within teams in order to achieve a common goal
Demonstrate commitment to professional conduct and development that recognises the social, legal and ethical implications of their work, to work independently, and self- and peer-assess performance
Demonstrate a deep understanding of the fundamentals of research methodologies, including defining research problems, background reading and literature review, designing experiments, and effectively communicating results
Proficiently apply research methods to the solution of contemporary research problems in computer science, and
Demonstrate an understanding of research processes including research proposals, article reviewing and ethics clearance.
Upon successful completion of this program Science graduates will be able to:
- Plan and engage in an independent and sustained critical investigation and evaluation of a chosen research topic
- Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, and draw appropriate conclusions
- Engage in critical review of appropriate and relevant information sources
- Communicate concepts and results clearly and effectively both in writing and orally
- Record original data and apply statistical or other evaluation processes to original data when appropriate
Further Information
The Bachelor of Advanced Computing (Research & Development) is a four year program that is accredited by the Australian Computing Society. The program has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.
Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program which also has many research and development opportunities.
A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline
Program Transfers
Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally students would need to transfer into the program before the end of their second year.
Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College. Visit the College of Engineering and Computer Science website.
The Bachelor of Advanced Computing (Research & Development) is a four year program that is accredited by the Australian Computing Society. The program has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.
Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program which also has many research and development opportunities.
A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline
Program Transfers
Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally students would need to transfer into the program before the end of their second year.
Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College. Visit the College of Engineering and Computer Science website.
Admission Requirements
- ATAR:
- 99
- QLD Band:
- 1
- International Baccalaureate:
- 42
Pathways
Bachelor of Advanced Computing (Honours) might be a pathway for students who meet the Maths pre-requisites but do not have the required score for direct entry into this program.
Eligible students should enrol into Bachelor of Advanced Computing (Honours) and if they can maintain a High Distinction average in their first year, they may be approved to transfer into the R&D program in their second year.
Prerequisites
ACT: Specialist Mathematics (Major/Minor)/Specialist Methods(Major/Minor), NSW: Mathematics Extension 1. More information about interstate subject equivalencies can be found here.
Adjustment Factors
ANU offers rank adjustments for a number of adjustment factors, including for high achievement in nationally strategic senior secondary subjects and for recognition of difficult circumstances that students face in their studies. Rank adjustments are applied to Bachelor degree applicants with an ATAR at or above 70. Points are awarded in accordance with the approved schedules, and no more than 15 points (maximum 5 subject/performance-based adjustments, maximum 10 equity-based adjustments and maximum 5 Elite Athlete adjustments) will be awarded. Subject and performance-based adjustments do not apply to programs with a minimum selection rank of 98 or higher. Visit the ANU Adjustment Factors website for further information.
Indicative fees
Bachelor of Advanced Computing (Research and Development) (Honours) - Commonwealth Supported Place (CSP)
Bachelor of Science (Psychology) - Commonwealth Supported Place (CSP)
For more information see: http://www.anu.edu.au/students/program-administration/costs-fees
- Annual indicative fee for international students
- $45,600.00
Scholarships
ANU offers a wide range of scholarships to students to assist with the cost of their studies.
Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are. Specific scholarship application process information is included in the relevant scholarship listing.
For further information see the Scholarships website.
Program Requirements
The Bachelor of Advanced Computing (Research and Development) (Honours) flexible double degree component requires completion of 144 units, of which:
A maximum of 60 units may come from completion of 1000-level courses
12 units count towards the requirements of the other double degree component
The 144 units must include:
84 units from completion of compulsory courses from the following list:
COMP1130 Programming as Problem Solving (Advanced)
COMP1140 Structured Programming (Advanced)
COMP1600 Foundations of Computing
COMP2100 Software Design Methodologies
COMP2120 Software Engineering
COMP2300 Computer Organisation and Program Execution
COMP2310 Systems, Networks and Concurrency
COMP2420 Introduction to Data Management, Analysis and Security
COMP2550 Advanced Computing R&D Methods
COMP2560 Studies in Advanced Computing R&D
COMP3600 Algorithms
COMP3770 Individual Research Project (12 units)
MATH1005 Discrete Mathematical Models
6 units from completion of course from the following list:
MATH1013 Mathematics and Applications 1
MATH1115 Advanced Mathematics and Applications 1
6 units from completion of course from the following list:
MATH1014 Mathematics and Applications 2
MATH1116 Advanced Mathematics and Applications 2
STAT1003 Statistical Techniques
STAT1008 Quantitative Research Methods
24 units from completion of one of the following specialisations:
Machine Learning
Artificial Intelligence
Systems and Architecture
Theoretical Computer Science
24 units from completion of COMP4550 Advanced Computing Research Project
The Bachelor of Science (Psychology) flexible double degree component requires completion of 96 units, of which:
A maximum of 36 units may come from completion of 1000-level courses
The 96 units must include:
60 units from the completion of the following compulsory courses:
PSYC1003 Psychology 1: Understanding Mind, Brain and Behaviour
PSYC1004 Psychology 2: Understanding People in Context
PSYC2001 Social Psychology
PSYC2002 Developmental Psychology
PSYC2007 Biological Basis of Behaviour
PSYC2008 Cognition
PSYC2009 Quantitative Methods in Psychology
PSYC3018 Advanced Research Methods
PSYC3025 Psychopathology Across the Lifespan
PSYC3026 Personality Psychology
18 units from completion of 3000-level courses in the subject area PSYC Psychology
12 units from completion of further 1000-level courses from the Science Course List
6 units from completion of further courses from the Science Course List
A maximum of 12 units from completion of 1000-level courses may contribute towards meeting the requirements of two Science majors with common 1000-level course requirements.
Majors
Bachelor of Advanced Computing (Research and Development) (Honours) Majors
Minors
Bachelor of Advanced Computing (Research and Development) (Honours) Minors
Specialisations
Bachelor of Advanced Computing (Research and Development) (Honours) Specialisations
Study Options
Year 1 | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | ||
Year 2 | COMP2100 Software Design Methodologies 6 units | COMP2550 Advanced Computing R&D Methods 6 units | COMP2300 Computer Organisation and Program Execution 6 units | |
COMP2120 Software Engineering 6 units | COMP2310 Systems, Networks and Concurrency 6 units | COMP2560 Studies in Advanced Computing R&D 6 units | ||
Year 3 | COMP2420 Introduction to Data Management, Analysis and Security 6 units | Computing Research Specialisation 6 units | ||
COMP3600 Algorithms 6 units | Computing Research Specialisation 6 units | |||
Year 4 | COMP3770 Individual Research Project 6 units | Computing Research Specialisation 6 units | ||
COMP3770 Individual Research Project 6 units | Computing Research Specialisation 6 units | |||
Year 5 | COMP4550 Advanced Computing Research Project 12 units | COMP4550 | ||
COMP4550 Advanced Computing Research Project 12 units | COMP4550 |
Honours
If you attain a sufficient standard in the pass degree, you may be admitted to the Honours year to become a candidate for the degree with Honours. For more information please see the Bachelor of Science (Psychology) (Honours) entry in the Programs and Courses catalogue.
Back to the Bachelor of Advanced Computing (Research and Development) (Honours) page
As a high-achieving student in the Bachelor of Advanced Computing (Research & Development) (Honours) (BAC(R&D)) degree you have chosen a unique degree. You will study to become an innovator and a future leader of the ICT revolution by undertaking research with some of the world's leading researchers. You will undertake an accelarated mode of learning, develop a strong foundation in core computer science and be provided with the tools to develop the next generation of computing applications.
The BAC can be taken as a single degree which inlcudes a number of core and compulsory courses. The single degree also offers 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a Computing major, minor, or specialisation), or from other university courses.
The BAC(R&D) can also be taken as a part of many double degrees. You may not be able to complete a major in a computing discipline but a minor might be possible. You will be able to specialise in other areas as part of the ‘other half’ of your double degree.Single degree
- This degree requires 192 units (each course is typically 6 units)
- Typically you will study four courses per semester (total of 24 units)
Double degree
- This degree requires 144 units (each course is typically 6 units)
- Typically you will study four courses per semester (total of 24 units)
- You will complete a Research and Development major (48 units)
- There are no university electives in the double degree
- You can find your double degree with BAC(R&D) from Program and Courses
About this degree
- Typically you will study 4 courses per semester (total of 24 units) as a
full time student giving you a total of 24 courses across your whole
degree.
- The degree comprises compulsory requirements, additional computing electives, research and development projects, internship and electives in the single degree.
- There are no electives in the double degree but you still may be able to study a computing specialisation (24 units).
- In your first year in the double degree, MATH1115 and MATH1116 must be taken as part of the other half of your degree unless otherwise specified.
Enrolment Status
While it is possible to enrol in fewer courses per semester, which is
called studying part-time, it will take you longer to finish your
program and get your degree. If you are an international study you must
always be full-time.
Important things to keep in mind when choosing your 1000-level courses
- IF YOU ARE COMMENCING IN JULY YOU SHOULD SEND AN EMAIL TO <studentadmin.cecs@anu.edu.au> FOR ADVICE ABOUT YOUR ENROLMENT OR YOU SHOULD ATTEND AN ENROLMENT ADVICE SESSION AT THE UNIVERSITY IN THE WEEK BEFORE SEMESTER COMMENCES.
- As the BAC(R&D) is an advanced degree, you will study both first and second year courses in your first year. First year courses are typically '1000-level' courses ie start with '1' while second year courses typically start with '2'.
- Students doing double degrees with business degrees do STAT1008 in place of STAT1003 and take an additional Computing elective.
- You need to enrol in courses for both First Semester and Second Semester
- You can't study more than four courses (24 units) per semester, eight for the year
- You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC(R&D) half of the double degree.
Study Options
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | University Elective |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | University Elective |
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | MATH1005 Discrete Mathematical Models 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; | Other Degree course |
COMP1140 Structured Programming (Advanced) 6 units | COMP1600 Foundations of Computing 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; | Other Degree course |
Academic Advice
For assistance, please email: studentadmin.cecs@anu.edu.au
Back to the Bachelor of Science (Psychology) page
Please note that if you are commencing your studies in semester 2 there may be restrictions on the courses available for enrolment. We strongly recommend that you make an appointment with an academic advisor. You can make an appointment by using our online booking system here. Alternatively, you can call Science Central on 6125 2809. There will also be advisory sessions offered during the week before semester commences.
What is
consciousness? Do people see colours the same way? How do we make decisions?
Contrary to popular belief most psychologists work with healthy people, trying
to find the answers to questions like these.
Studying psychology at ANU will expose you to a wide range of psychological
sciences, covering topics as varied as how groups interact, vision and how it
can be tricked to see what is not really there, how the brain develops as a
baby and how it will change again as you get older, how impulses are carried
from brain to muscle, and how things go wrong in abnormal psychology.
The ANU Bachelor of Science (Psychology) teaches you skills sought after by
employers including statistics and experimental design, critical thinking and
communication, and provides an excellent grounding to enter the workforce or
continue with further study.
Single degree
- This degree requires 144 units
- A maximum of 60 units of 1000 level courses of which 24 units must be Science
- A minimum of 36 units 3000 level PSYC courses
- Completion of the accredited sequence of psychology courses
- Other courses from the Science course list or another ANU College (48 units maximum of non-science courses allowed)
Double degree
- This degree requires 96 units Science courses
- A maximum of 36 units of 1000 level Science courses
- A minimum of 36 units 3000 level PSYC courses
- Completion of the accredited sequence of psychology courses
- Other courses from the Science course list
About this degree
Single degree
In a Bachelor of Science (Psychology) single degree program you will study a total of 144 units. Typically you will take 4 courses per semester (total of 24 units) as a full time student giving you a total of 24 courses across your whole degree.
You will need to complete a minimum of 16 science courses (96 units) including the following accredited courses:
PSYC1003 Psychology 1
PSYC1004 Psychology 2
PSYC2001 Social Psychology
PSYC2002 Developmental Psychology
PSYC2007 Biological Basis of Behaviour
PSYC2008 Cognition
PSYC2009 Quantitative Methods in Psychology
PSYC3018 Advanced Research Methods
PSYC3025 Psychopathology across the Life Span
PSYC3026 Personality Psychology
You will also get to choose eight courses (48
units) from other ANU Colleges. You can try a range of courses or take a
major or minor in a non-Science subject, such as history or marketing. The
choice is yours.
Double degree
In a Bachelor of Science (Psychology) double degree program you will study a total of 96 units including all the courses listed above. Typically you will take 4 courses per semester (total of 24 units) as a full time student giving you a total of 16 courses across your whole degree. However, for each semester you are likely to take 2 courses from your Science (Psychology) degree and then 2 courses from the other half of your double degree – still a total of 4 courses a semester.
Enrolment Status
It is possible to enrol in fewer courses per semester but it will take you longer to finish your program and get your degree. If you are an international student you must always be enrolled full-time in 24 units each semester.
- You need to enrol in courses for both First Semester and Second Semester.
- You can’t study more than four courses (24 units) per semester, eight for the year.
- You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your Science (Psychology) half of the double degree.
Important things to keep in mind when choosing your 1000-level courses
There are two compulsory 1000 level courses you must take in your first year:
Electives
Remember you can choose up to 8 courses from another ANU College if you are undertaking the single Bachelor of Science (Psychology) program.
Study Options
Bachelor of Science (Psychology) - single degree
This is a typical study pattern for the first year of a student undertaking a Bachelor of Science (Psychology).Study Options
Year 1 48 units | PSYC1003 Psychology 1: Understanding Mind, Brain and Behaviour 6 units | 1000 level Science elective 6 units | Science or non-science course 6 units | Science or non-science course 6 units |
PSYC1004 Psychology 2: Understanding People in Context 6 units | 1000 level Science elective 6 units | Science or non-science course 6 units | Science or non-science course 6 units |
Bachelor of Science (Psychology) - double degree
This is a typical study pattern for the first year of a student undertaking a Bachelor of Science (Psychology) with another three year degree, such as the Bachelor of Arts.Study Options
Year 1 48 units | PSYC1003 Psychology 1: Understanding Mind, Brain and Behaviour 6 units | 1000 level Science elective 6 units | Degree B Course 6 units | Degree B Course 6 units |
PSYC1004 Psychology 2: Understanding People in Context 6 units | 1000 level Science elective 6 units | Degree B Course 6 units | Degree B Course 6 units |
Academic Advice
For further information, you can:
- Visit the Research School of Psychology webpage here, or
- Download the Science first year course guide available here, or
- View our program presentation videos located on our New commencers & first year students page, or
- Email us at science.enquiries@anu.edu.au, or
- Come and talk to someone face-to-face. You can make an appointment with an academic advisor here or by calling Science Central on 6125 2809.
Do you want to talk to someone before enrolling?
Contact Science Enquiries at science.enquiries@anu.edu.au