If you want to explore the cutting edge of research in computing and gain skills that will enable you to development software that tackles complex problems then you are looking at the right degree.
This is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology revolution. It also is a great pathway to a PhD.
As a degree accredited by the Australian Computer Society you will not only learn advanced computing techniques and have the opportunity to complete a unique specialisation, but also develop exceptional professional skills including communication and teamwork.
You’ll work alongside distinguished researchers at ANU and pursue research projects in your own area of interest.
While some of our students are developing code which controls unmanned aerial vehicles, others are busy writing algorithms to mine through Petabytes of data. If mastering challenging projects is your thing, the ANU Bachelor of Advanced Computing (Research and Development) can launch you into a spectacular career
Do you see yourself shaping Australia's foreign policy decisions? Or working with elite international organisations like the United Nations or our top spy agencies? The Bachelor of International Security Studies can help you make your dream career a reality.
When you study the Bachelor of International Security Studies you will delve deeply into the contemporary security threats facing nations, international organisations and businesses around the world – including the threat of military power, civil war, terrorism, cybercrime, environmental degradation and food security to name just a few. Read more about this degree on our website.
Career Options
Graduates from ANU have been rated as Australia's most employable graduates and among the most sought after by employers worldwide.
The latest Global Employability University Ranking, published by the Times Higher Education, rated ANU as Australia's top university for getting a job for the fourth year in a row.
Employment Opportunities
Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.
They can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Computer Engineer
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including:
- IBM
- Microsoft
- Yahoo
- Intel
- Price Waterhouse Coopers
- Accenture Australia
- Bloomberg
- National Australia Bank
- Citigroup
- Deloitte
- Unisys
- Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)
Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.
They can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Computer Engineer
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including:
- IBM
- Microsoft
- Yahoo
- Intel
- Price Waterhouse Coopers
- Accenture Australia
- Bloomberg
- National Australia Bank
- Citigroup
- Deloitte
- Unisys
- Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)
Learning Outcomes
Upon successful completion, students will be able to:
1. Define and analyse complex problems, and design, implement and evaluate solutions that demonstrate an understanding of the systems context in which software is developed and operated including economic, social, historical, sustainability and ethical aspects,
2. Demonstrate an operational and theoretical understanding of the foundations of computer science including programming, algorithms, logic, architectures and data structures,
3. Recognise connections and recurring themes, including abstraction and complexity, across the discipline,
4. Adapt to new environments and technologies, and to innovate,
5. Demonstrate an understanding of deep knowledge in at least one area of computer science,
6. Communicate complex concepts effectively with diverse audiences using a range of modalities,
7. Work effectively within teams in order to achieve a common goal,
8. Demonstrate commitment to professional conduct and development that recognises the social, legal and ethical implications of their work, to work independently, and self- and peer-assess performance,
9. Demonstrate a deep understanding of the fundamentals of research methodologies, including defining research problems, background reading and literature review, designing experiments, and effectively communicating results,
10. Proficiently apply research methods to the solution of contemporary research problems in computer science, and
11. Demonstrate an understanding of research processes including research proposals, article reviewing and ethics clearance.
Graduates will have the skills and knowledge to:
• Identify and explain the key concepts, ideas and principal actors in international security.
• Evaluate the major theoretical frameworks for understanding the complexities of contemporary international security challenges.
• Demonstrate a thorough knowledge of the historical and contemporary dimensions of international, internal and transnational security, especially in the Asia-Pacific region.
• Analyse the key challenges facing Australian security and defence policy in the ‘Asian Century’.
• Reflect critically on the principal factors that determine the security policies of Australia and the major Asia-Pacific powers.
• Employ communication and presentation skills (oral, written and electronic).
• Demonstrate teamwork and interpersonal skills.
• Exhibit the ability to write for both academic and professional audience
Further Information
The Bachelor of Advanced Computing (Research & Development) is a four year program that is accredited by the Australian Computing Society. It is specifically designed for exceptional students who have an interest in undertaking research and development in either industry or an academic environment. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, a a familiarity with business aspects of the ICT industry including product innovation and development, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.
A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline.
The Bachelor of Advanced Computing (Research & Development) is a four year program that is accredited by the Australian Computing Society. It is specifically designed for exceptional students who have an interest in undertaking research and development in either industry or an academic environment. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, a a familiarity with business aspects of the ICT industry including product innovation and development, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.
A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline.
Admission Requirements
Admission to all programs is on a competitive basis. Admission to undergraduate degrees is based on meeting the ATAR requirement or an equivalent rank derived from the following qualifications:
• An Australian year 12 qualification or international equivalent; OR
• A completed Associate Diploma, Associate Degree, AQF Diploma, Diploma, AQF Advanced Diploma, Graduate Certificate or international equivalent; OR
• At least one standard full-time year (1.0 FTE) in a single program of degree level study at an Australian higher education institution or international equivalent; OR
• An approved tertiary preparation course unless subsequent study is undertaken.
Click HERE for further information about domestic admission.
More information about ATAR requirements for individual programs can be found HERE.
The table below is a guide to the entry level required for domestic applicants. Exact entry level will be set at time of offer.
- ATAR:
- 99
- QLD Band:
- 1
- International Baccalaureate:
- 42
Domestic applicant entry requirements
Queensland Band equivalents are a guide only - selection is made on a UAI equivalent that is not available to students.
International applicant entry requirements
International applicants may view further information on admissions requirements at Entry Requirements for International Undergraduate Applicants
The University reserves the right to alter or discontinue its programs as required.
Pathways
Bachelor of Advanced Computing (Honours) might be a pathway for students who meet the Maths pre-requisites but do not have the required score for direct entry into this program.
Eligible students should enrol into Bachelor of Advanced Computing (Honours) and if they can maintain a High Distinction average in their first year, they may be approved to transfer into the R&D program in their second year.
Prerequisites
ACT: Specialist Mathematics (major/minor).
NSW: HSC Mathematics Extension 1.
Adjustment Factors
Bonus points to do not apply to programs with an ATAR cutoff of 98 or higher. They do not apply to this program.
Indicative fees
Bachelor of Advanced Computing (Research and Development) (Honours) - Commonwealth Supported Place (CSP)
Bachelor of International Security Studies - Commonwealth Supported Place (CSP)
For more information see: http://www.anu.edu.au/students/program-administration/costs-fees
- Annual indicative fee for international students
- $39,024.00
Scholarships
ANU offers a wide range of scholarships to students to assist with the cost of their studies.
Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are. Specific scholarship application process information is included in the relevant scholarship listing.
For further information see the Scholarships website.
Program Requirements
The Bachelor of Advanced Computing (Research and Development) (Honours) flexible double degree component requires completion of 156 units, of which:
A maximum of 60 units may come from completion of 1000-level courses
12 units count towards the requirements of the other double degree component
The 156 units must include:
84 units from completion of compulsory courses from the following list:
COMP1130 Programming as Problem Solving (Advanced)
COMP1140 Structured Programming (Advanced)
COMP1600 Foundations of Computing
COMP2100 Software Design Methodologies
COMP2120 Software Engineering
COMP2300 Computer Organisation and Program Execution
COMP2310 Systems, Networks and Concurrency
COMP2420 Introduction to Data Management, Analysis and Security
COMP2550 Advanced Computing R&D Methods
COMP2560 Studies in Advanced Computing R&D
COMP3600 Algorithms
COMP3770 Individual Research Project (12 units)
MATH1005 Discrete Mathematical Models
6 units from completion of course from the following list:
MATH1013 Mathematics and Applications 1
MATH1115 Advanced Mathematics and Applications 1
6 units from completion of course from the following list:
MATH1014 Mathematics and Applications 2
MATH1116 Advanced Mathematics and Applications 2
STAT1003 Statistical Techniques
STAT1008 Quantitative Research Methods
24 units from completion of one of the following specialisations:
Intelligent Systems
Systems and Architecture
Theoretical Computer Science
24 units from completion of COMP4550 Advanced Computing Research Project
Students must achieve a minimum 80% weighted average mark across all compulsory courses in the Bachelor of Advanced Computing (Research and Development) (Honours) component undertaken in each period (Summer/First Semester/Autumn) and (Winter/Second Semester/Spring) in order to continue in the Bachelor of Advanced Computing (Research and Development) (Honours). Students who do not achieve a minimum of 80% weighted average mark will be transferred from the Bachelor of Advanced Computing (Research and Development) (Honours) double degree to the equivalent to the Bachelor of Advanced Computing (Honours) double degree.
Students must achieve a minimum 80% final Honours mark in order to graduate with the Bachelor of Advanced Computing (Research and Development) (Honours). Students who do not achieve a minimum 80% final Honours mark will be transferred to the equivalent Bachelor of Advanced Computing (Honours) double degree.
HONS4700 Final Honours Grade will be used to record the Class of Honours and the Mark. The Honours Mark will be a weighted average percentage mark (APM) calculated by first calculating the average mark for 1000,2000, 3000 and 4000 level courses. We denote these averages: A1, A2, A3, and A4 respectively. The averages are computed based on all units counted towards satisfaction of degree requirements, excluding non-COMP electives. Finally these averages are combined using the formula APM = (0.1 X A1) + (0.2 X A2) + (0.3 X A3) + (0.4 X A4).
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Actuarial Studies:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Actuarial Studies component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Arts:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Arts component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Asia-Pacific Security:
12 units from completion of courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the electives for the Bachelor of Asia-Pacific Security component of this double degree:
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Asia-Pacific Studies:
12 units from completion of courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the electives for the Bachelor of Asia-Pacific Studies component of this double degree:
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Biotechnology:
12 units of 3000-level COMP courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the requirement to complete “12 units of elective Science courses at 3000/4000 level’ in the Bachelor of Biotechnology
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Business Administration:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Business Administration component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Commerce:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Commerce component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
It is not possible to complete the Professional Accounting requirements in the Bachelor of Commerce in the double degree.
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Economics:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing contribute towards the Bachelor of Economics component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Finance:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Finance component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Genetics:
The completion of STAT1003 Statistical Techniques and COMP1130 Introduction to Advanced Computing I in the Bachelor of Advanced Computing (Research and Development) (Honours)satisfies the requirement to complete STAT1003 Statistical Techniques and COMP1100 Introduction to Programming and Algorithms in the Bachelor of Genetics component
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Pacific Studies:
12 units from completion of courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the electives for the Bachelor of Pacific Studies component of this double degree:
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Science component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science (Forest Sciences):
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Science (Forest Sciences) component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science (Psychology):
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Science (Psychology) component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science (Resource and Environmental Management):
6 units from completion of MATH1115 Mathematics & Applications I Honours in the Bachelor of Advanced Computing (Research and Development) (Honours) satisfies the requirement to complete “6 units from completion of courses from the Science course list” in the Bachelor of Science (Resource and Environmental Management)
6 units from completion of 3000-level COMP courses in the Bachelor of Advanced Computing (Research and Development) (Honours) counts towards the requirement to complete “18 units from completion of 3000-level courses from the subject areas EMSC or ENVS” in the Bachelor of Science (Resource and Environmental Management)
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Statistics:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Statistics component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
The Bachelor of International Security Studies flexible double degree component requires completion of 96 units, of which:
A maximum of 36 units may come from completion of 1000-level courses
The 96 units must consist of:
30 units from completion of the following compulsory courses:
POLS2132 Current Issues in International Security
STST1001 Introduction to International Security Studies
STST1003 Coping with Crisis: The Practice of International Security
STST2001 International Security issues in the Asia Pacific
STST3002 Australia's Security in the Asian Century
18 units from completion of courses from the following list:
ASIA2053 Civil Wars and Civil Peace
ASIA2060 Southeast Asian Security
ASIA2093 Natural Resource Conflicts in Asia and the Pacific
ASIA2110 Asia Pacific Affairs Internship
HIST2141 The Cold War, 1945-1989
INTR2012 China's New Approaches to Asia Pacific Security
INTR2014 Indian Foreign and Security Policy
INTR2016 US Security Policy in Asia
INTR2018 Japan's Security Dilemmas
INTR2020 Security and Stability on the Korean Peninsula
INTR2024 Nuclear Politics in Asia: Challenges and Opportunities
MEAS2001 New States of Eurasia: Emerging Issues in Politics and Security
STST2124 Politics of Nuclear Weapons
STST2131 Security Communities from War to Peace
POLS3033 Environment, Human Security and Conflict
POLS3036 International Terrorism
STST1002 Tides of Conflict in the Asia-Pacific
STST2003 Security in the South Pacific: Is it Australia’s “Arc of Instability”
STST2004 Special Topic in International Security
STST3003 Honeypots and Overcoats: Australian Intelligence in the World
STST3004 Advanced Study in Asia-Pacific Security
24 units from completion of one of the following minors:
Arabic
Asia-Pacific Security
Burmese Language
Chinese Language
French Language and Culture
German Language and Culture
Hindi Language
Historical International Security
Indonesian Language
International Relations
Italian Language and Culture
Japanese Language
Korean Language
Mongolian Language
Peace and Conflict Studies
Persian
Russian
Sanskrit Language
Spanish
Tetum Language
Thai Language
Urdu Language
Vietnamese Language
24 units from completion of elective courses offered by ANU
Minors
Bachelor of International Security Studies Minors
Specialisations
Bachelor of Advanced Computing (Research and Development) (Honours) Specialisations
Study Options
Year 1 | COMP1130 Programming as Problem Solving (Advanced) 6 units | STAT1003 Statistical Techniques 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units | |
COMP1140 Structured Programming (Advanced) 6 units | COMP2600 | MATH1116 Advanced Mathematics and Applications 2 6 units | ||
Year 2 | COMP2100 Software Design Methodologies 6 units | COMP2550 Advanced Computing R&D Methods 6 units | COMP2300 Computer Organisation and Program Execution 6 units | |
COMP2130 Software Analysis and Design 6 units | COMP2310 Systems, Networks and Concurrency 6 units | COMP2560 Studies in Advanced Computing R&D 6 units | ||
Year 3 | COMP3120 Managing Software Development 6 units | COMP3530 Systems Engineering for Software Engineers 6 units | ||
COMP3600 Algorithms 6 units | MGMT3027 Entrepreneurship and Innovation 6 units | |||
Year 4 | COMP3550 Advanced Computing R&D Project 6 units | COMP3630 Theory of Computation 6 units | ||
COMP3550 Advanced Computing R&D Project 6 units | COMP 3000/4000 elective 6 units | |||
Year 5 | COMP4550 Advanced Computing Research Project 12 units | COMP4550 | COMP 3000/4000 elective 6 units | |
COMP4550 Advanced Computing Research Project 12 units | COMP4550 | COMP 3000/4000 elective 6 units |
Back to the Bachelor of Advanced Computing (Research and Development) (Honours) page
As a high-achieving student in the Bachelor of Advanced Computing (Research & Development) (Honours) (BAC(R&D)) degree you have chosen a unique degree. You will study to become an innovator and a future leader of the ICT revolution by undertaking research with some of the world's leading researchers. You will undertake an accelarated mode of learning, develop a strong foundation in core computer science and be provided with the tools to develop the next generation of computing applications.
The BAC can be taken as a single degree which inlcudes a number of core and compulsory courses. The single degree also offers 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a Computing major, minor, or specialisation), or from other university courses.
The BAC(R&D) can also be taken as a part of many double degrees. You may not be able to complete a major in a computing discipline but a minor might be possible. You will be able to specialise in other areas as part of the ‘other half’ of your double degree.Single degree
- This degree requires 192 units (each course is typically 6 units)
- Typically you will study four courses per semester (total of 24 units)
- You will complete a Research and Development major (48 units)
- 36 units of electives (six courses). These courses may be used to study another computing major (48 units) or specialisation (24 units), or may be taken from other areas of the university.
Double degree
- This degree requires 144 units (each course is typically 6 units)
- Typically you will study four courses per semester (total of 24 units)
- You will complete a Research and Development major (48 units)
- There are no university electives in the double degree
- You can find your double degree with BAC(R&D) from Program and Courses
About this degree
- Typically you will study 4 courses per semester (total of 24 units) as a
full time student giving you a total of 24 courses across your whole
degree.
- The degree comprises compulsory requirements, additional computing electives, research and development projects, internship and electives in the single degree.
- There are no electives in the double degree but you still may be able to study a computing specialisation (24 units).
- In your first year in the double degree, MATH1115 and MATH1116 must be taken as part of the other half of your degree unless otherwise specified.
Enrolment Status
While it is possible to enrol in fewer courses per semester, which is
called studying part-time, it will take you longer to finish your
program and get your degree. If you are an international study you must
always be full-time.
Important things to keep in mind when choosing your 1000-level courses
- IF YOU ARE COMMENCING IN JULY YOU SHOULD SEND AN EMAIL TO <studentadmin.cecs@anu.edu.au> FOR ADVICE ABOUT YOUR ENROLMENT OR YOU SHOULD ATTEND AN ENROLMENT ADVICE SESSION AT THE UNIVERSITY IN THE WEEK BEFORE SEMESTER COMMENCES.
- As the BAC(R&D) is an advanced degree, you will study both first and second year courses in your first year. First year courses are typically '1000-level' courses ie start with '1' while second year courses typically start with '2'.
- Students doing double degrees with business degrees do STAT1008 in place of STAT1003 and take an additional Computing elective.
- You need to enrol in courses for both First Semester and Second Semester
- You can't study more than four courses (24 units) per semester, eight for the year
- You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC(R&D) half of the double degree.
Majors and Minors
See available majors and minors for this program
The Research & Development major is a compulsory requirement of both the single and double degrees. You may be able to study a computing major (48 units) or minor/specialisation (24 units) in the single degree. The ATTACHED DOCUMENT has more information about first year courses that are suitable for the majors.
It is not possible to complete a computing major (apart from the R&D major) in a double degree but a specilisation is possible. You do not need to make decisions about minors/specialisations until later in your degree.
Electives
If you are in the single degree, you will have just one university elective to choose. This is in your second semester.
To find
1000-level courses, use the CATALOGUE SEARCH
Suggested electives in your first year can be found in the pdf document that is an attachment in the above section about Majors and Minors.
Some popular choices for electives include: INFS1001, COMP1720, COMP2400. You can use the catalogue search function to find descriptions of these.Study Options
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | COMP2300 Computer Organisation and Program Execution 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units | STAT1003 Statistical Techniques 6 units |
COMP1140 Structured Programming (Advanced) 6 units | COMP2600 | MATH1116 Advanced Mathematics and Applications 2 6 units | Elective course 6 units |
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Programming as Problem Solving (Advanced) 6 units | COMP2300 Computer Organisation and Program Execution 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units | Other Degree course |
COMP1140 Structured Programming (Advanced) 6 units | COMP2600 | MATH1116 Advanced Mathematics and Applications 2 6 units | Other Degree course |
Academic Advice
For assistance, please email: studentadmin.cecs@anu.edu.au
Back to the Bachelor of International Security Studies page
When you study the Bachelor
of International Security Studies you will delve deeply into the
contemporary security threats facing nations, international organisations and
businesses around the world - including the threat of military power, civil
war, terrorism, cybercrime, environmental degradation and food security to name
just a few. Read more about this degree on our website.
Single degree
This degree requires the completion of 144 units:
· A maximum of 60 units of 1000 level courses is allowed
· 48 units must come from completion of the International Security major
· 24 units from completion of a minor approved by the ANU College of Asia and the Pacific
· 72 units
from completion of elective courses offered by ANU
Double degree
This degree requires the completion of 96 units:
· A maximum of 36 units of 1000 level courses is allowed
· 48 units must come from completion of the International Security major
· 24 units from completion of a minor approved by the ANU College of Asia and the Pacific
· 24 units from completion of elective courses offered by ANU
About this degree
Single degree
In a Bachelor of International Security Studies single degree program you will
study a total of 144 units. Typically you will take 4 courses per
semester (total of 24 units) as a full time student giving you a total of 24
(6-unit) courses across your whole degree. Once you have fulfilled the
requirements of the International Security Studies major and a minor, you can try a range of
courses or take a second major or minor in a subject area of your choice.
Double degree
You will need to complete a minimum of 96 units towards the Bachelor of
International Security Studies degree but will also get to choose 4 courses (24
units) from other ANU Colleges.
Enrolment Status
It is possible to enrol in fewer courses per semester but it
will take you longer to finish your program and get your degree. If you are an
international student you must always be enrolled full-time in 24 units each
semester.
Remember you will need to enrol in courses for both First Semester and Second
Semester. You will be able to change your enrolment in courses up until
the end of week 2 of each semester without penalty. Other things to be aware of:
A course can only be counted towards one major or minor.
You can’t study more than 4 courses (24 units) per semester.
You may need to enrol in courses for your major and/or your minor, particularly if you are completing a double degree.
If you are intending to enrol in language courses and have previous experience with the language you wish to study, you need to sit a placement test to ensure you are enrolled at the most appropriate level of language study. Further information is available here.
Important things to keep in mind when choosing your 1000-level courses
When you enrol for the first time you will study ‘1000-level’ courses. These courses have ‘1’ as the first number in their course code, such as ASIA1234.
Majors and Minors
See available majors and minors for this program
Students in this degree must complete the International Security Major, and a minor from the following list:
Arabic
Asia-Pacific Security
Chinese Language
French Language and Culture
German Language and Culture
Hindi Language
Historical International Security
Indonesian Language
International Relations
Italian Language and Culture
Japanese Language
Korean Language
Peace and Conflict Studies
Persian
Russian
Sanskrit Language
Spanish
Thai Language
Urdu Language
Vietnamese Language
You can choose to turn your minor into a major. Once you've selected courses for a major, a minor or a second major or minor, you should choose electives to make up the balance of your courses.
Electives
You can use your electives to enrol in any courses that you
like, provided you meet prerequisite requirements. Students who choose to do a
second major will need to take the additional 24 units for their major from
their electives.
To find 1000-level courses, search Programs and Courses. Remember you can choose up to 8 courses from another ANU College at the University if you are undertaking the single Bachelor of International Security Studies program.
Study Options
Single Degree example
Study Options
Year 1 48 units | STST1001 Introduction to International Security Studies 6 units | 1000-level course toward completion of minor in List B | Elective 6 units | Elective 6 units |
STST1003 Coping with Crisis: The Practice of International Security 6 units | Elective 6 units | Elective 6 units | Elective 6 units |
Double Degree example
Study Options
Year 1 48 units | STST1001 Introduction to International Security Studies 6 units | 1000-level course toward completion of minor in List B | 1000 level course from other degree 6 units | 1000 level course from other degree 6 units |
STST1003 Coping with Crisis: The Practice of International Security 6 units | Elective 6 units | 1000 level course from other degree 6 units | 1000 level course from other degree 6 units |