If you want to find out what drives (and how to work for) companies like Google, Microsoft, Apple or Facebook, you are looking at the right degree.
This is a unique, interdisciplinary education package that will prepare you to be a future leader of the information and communications technology revolution.
You will not only learn advanced computing techniques and have the opportunity to complete a unique major, but also develop exceptional professional skills in areas of entrepreneurship and management.
You’ll work alongside distinguished researchers at ANU and NICTA (National ICT Australia), and pursue research projects in your own area of interest.
While some of our students are flying unmanned aerial vehicles 15,000 kilometres away, others are busy writing algorithms to mine through Petabytes of data. If mastering challenging projects is your thing, the ANU Bachelor of Advanced Computing can launch you into a spectacular career.
An undergraduate degree offered by the ANU College of Asia and the Pacific
Australia is increasingly looking to Asia - strategically, economically, politically, and culturally - and all eyes are on the graduates of tomorrow to take us there. Watch our video to find out how this degree will prepare you for a successful career in the Asian Century.
With a Bachelor of Asian Studies you will master an Asian language, acquire in-depth contextual knowledge, and graduate with the kind of Asian literacy that gets you noticed by employers.
And if you love adventure, we offer you a variety of study opportunities in the region so you can experience Asia first hand. Plus we’ll provide you with funding to help get you there.
Career Options
ANU provides you with more choice for your entrance score by offering the new Flexible Double Degree program.
The ANU Flexible Double Degree lets you build skills for your chosen career without forfeiting your passion. It's your choice to build a double degree partnership that suits your head and your heart.http://students.anu.edu.au/applications/
Employment Opportunities
Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.
They can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Computer Engineer
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including:
- IBM
- Microsoft
- Yahoo
- Intel
- Price Waterhouse Coopers
- Accenture Australia
- Bloomberg
- National Australia Bank
- Citigroup
- Deloitte
- Unisys
- Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)
Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.
They can work across a range of industries in a variety of roles. Examples include:
- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist,
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Computer Engineer
- Advanced Software Solutions Engineer
- Software Architect
Our graduates work in many organisations including:
- IBM
- Microsoft
- Yahoo
- Intel
- Price Waterhouse Coopers
- Accenture Australia
- Bloomberg
- National Australia Bank
- Citigroup
- Deloitte
- Unisys
- Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)
Learning Outcomes
Upon successful completion, students will have the skills and knowledge to:
- Engage with Asia linguistically and culturally as a basis for independent lifelong learning from Asia and with Asia.
- Use concepts and methods from the humanities and social sciences to develop, review, analyse and synthesise knowledge about Asia, its regions, and its place in the world.
- Use engagement with Asia’s diversity as a basis for critically reflecting on concepts, methods and knowledge in the humanities and social sciences.
- Communicate knowledge of Asia to diverse audiences using academic and applied styles, in both English and an Asian language.
- Exercise critical thinking and judgment in identifying and solving problems, individually and in groups.
Further Information
The Bachelor of Advanced Computing (Research & Development) is four year program that will be accredited by the Australian Computing Society. It is specifically designed for exceptional students who have an interest in undertaking research and development in either industry or an academic environment. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, a a familiarity with business aspects of the ICT industry including product innovation and development, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.
A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline.
The Bachelor of Advanced Computing (Research & Development) is four year program that will be accredited by the Australian Computing Society. It is specifically designed for exceptional students who have an interest in undertaking research and development in either industry or an academic environment. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.
A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, a a familiarity with business aspects of the ICT industry including product innovation and development, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.
A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline.
Admission Requirements
- ATAR:
- 99
- QLD Band:
- 1
- International Baccalaureate:
- 42
Pathways
Bachelor of Advanced Computing (Honours) might be a pathway for students who meet the Maths pre-requisites but do not have the required score for direct entry into this program.
Eligible students should enrol into Bachelor of Advanced Computing (Honours) and if they can maintain a High Distinction average in their first year, they may be approved to transfer into the R&D program in their second year.
Prerequisites
ACT: Specialist Mathematics (major/minor).
NSW: HSC Mathematics Extension 1.
Adjustment Factors
Bonus points to do not apply to programs with an ATAR cutoff of 98 or higher. They do not apply to this program.
Indicative fees
Bachelor of Advanced Computing (Research and Development) (Honours) - Commonwealth Supported Place (CSP)
Bachelor of Asian Studies - Commonwealth Supported Place (CSP)
For more information see: http://www.anu.edu.au/students/program-administration/costs-fees
- Annual indicative fee for international students
- $33,168.00
Scholarships
ANU offers a wide range of scholarships to students to assist with the cost of their studies.
Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are. Specific scholarship application process information is included in the relevant scholarship listing.
For further information see the Scholarships website.
Program Requirements
The Bachelor of Advanced Computing (Research and Development) (Honours) flexible double degree component requires completion of 156 units, of which:
A maximum of 48 units may come from completion of 1000-level courses
12 units count towards the requirements of the other double degree component
The 156 units must include:
72 units from completion of compulsory courses from the following list:
COMP1130 Introduction to Advanced Computing I
COMP1140 Introduction to Advanced Computing II
COMP2100 Software Construction
COMP2130 Software Design and Analysis
COMP2300 Introduction to Computer Systems
COMP2310 Concurrent and Distributed Systems
COMP2600 Formal Methods in Software Engineering
COMP3120 Managing Software Development
COMP3600 Algorithms
COMP3630 Theory of Computation
MATH1115 Mathematics and Applications 1 Honours
MATH1116 Mathematics and Applications 2 Honours
6 units from completion of a course from the following list:
COMP3530 Systems Engineering for Software Engineers
VCUG3001 Unravelling Complexity
6 units from completion of a course from the following list:
MGMT3027 Entrepreneurship and Innovation
VCUG2002 Leadership and Influence in a Complex World
ENGN3230 Engineering Innovation
6 units from completion of a course from the following list:
STAT1003 Statistical Techniques
STAT1008 Quantitative Research Methods
48 units from completion of the Research and Development major
18 units from completion of further 3000- and 4000- courses from the subject area COMP Computer Science
Students must achieve a minimum 80% weighted average mark across all compulsory courses in the Bachelor of Advanced Computing (Research and Development) (Honours) component undertaken in each period (Summer/First Semester/Autumn) and (Winter/Second Semester/Spring) in order to continue in the Bachelor of Advanced Computing (Research and Development) (Honours). Students who do not achieve a minimum of 80% weighted average mark will be transferred from the Bachelor of Advanced Computing (Research and Development) (Honours) double degree to the equivalent to the Bachelor of Advanced Computing (Honours) double degree.
To qualify for the Bachelor of Advanced Computing (Research and Development)(Honours) component the Honours component must be completed with first class honours. Students who do not achieve this grade will graduate with the equivalent Bachelor of Advanced Computing (Honours) flexible double degree.
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Actuarial Studies:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Actuarial Studies component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Arts:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Arts component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Asia-Pacific Security:
12 units from completion of courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the electives for the Bachelor of Asia-Pacific Security component of this double degree:
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Asia-Pacific Studies:
12 units from completion of courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the electives for the Bachelor of Asia-Pacific Studies component of this double degree:
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Biotechnology:
12 units of 3000-level COMP courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the requirement to complete “12 units of elective Science courses at 3000/4000 level’ in the Bachelor of Biotechnology
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Business Administration:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Business Administration component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Commerce:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Commerce component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
It is not possible to complete the Professional Accounting requirements in the Bachelor of Commerce in the double degree.
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Economics:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing contribute towards the Bachelor of Economics component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Finance:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Finance component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Genetics:
The completion of STAT1003 Statistical Techniques and COMP1130 Introduction to Advanced Computing I in the Bachelor of Advanced Computing (Research and Development) (Honours)satisfies the requirement to complete STAT1003 Statistical Techniques and COMP1100 Introduction to Programming and Algorithms in the Bachelor of Genetics component
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Pacific Studies:
12 units from completion of courses required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the electives for the Bachelor of Pacific Studies component of this double degree:
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Science component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science (Forest Sciences):
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Science (Forest Sciences) component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science (Psychology):
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Science (Psychology) component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Science (Resource and Environmental Management):
6 units from completion of MATH1115 Mathematics & Applications I Honours in the Bachelor of Advanced Computing (Research and Development) (Honours) satisfies the requirement to complete “6 units from completion of courses from the Science course list” in the Bachelor of Science (Resource and Environmental Management)
6 units from completion of 3000-level COMP courses in the Bachelor of Advanced Computing (Research and Development) (Honours) counts towards the requirement to complete “18 units from completion of 3000-level courses from the subject areas EMSC or ENVS” in the Bachelor of Science (Resource and Environmental Management)
For Bachelor of Advanced Computing (Research and Development) (Honours)/Bachelor of Statistics:
12 units from completion of courses from the following list required for the Bachelor of Advanced Computing (Research and Development) (Honours) contribute towards the Bachelor of Statistics component of this double degree:
MATH1115 Mathematics & Applications I Honours
MATH1116 Mathematics & Applications II Honours
The Bachelor of Asian Studies flexible double degree component requires completion of 96 units, of which:
A maximum of 36 units may come from completion of 1000-level courses
The 96 units must include:
12 units from the completion of the following compulsory courses:
ASIA1025 Culture and Society in Asia and the Pacific
ASIA1030 Asia in Motion: Dynamics of Asian Societies
A minimum of 24 units from one of the following language subject areas:
ARAB Arabic
CHIN Chinese
FREN French
HIND Hindi
INDN Indonesian
JPNS Japanese
KORE Korean
SKRT Sanskrit
SPAN Spanish
THAI Thai
URDU Urdu
VIET Vietnamese
A minimum of 12 units from the completion of discipline courses from the following list:
ASIA2026 The Politics of China
ASIA2065 Comparative Politics (Asia Pacific)
ASIA2109 Politics of South Asia
ASIA2301 The Peopling of Asia & the Pacific
ASIA2302 Culture & Modernity in Asia
ASIA2303 Ethnography & Religion in Asia
ASIA2304 What is Literature? Asian Perspectives
ASIA2307 Empire in Asia
ASIA2308 Language & History in Asia & the Pacific
ASIA2310 Comparative Politics
ASIA2311 Gender and Cultural Studies in Asia and the Pacific
ASIA2516 Indonesia: Politics, Society and Development
INTR2010 International Relations of the Asia-Pacific
STST2001 International Security Issues in the Asia-Pacific
STST2002 Internal Security
A minimum of 6 units from the completion of regional courses from the subject area ASIA at 1000, 2000 or 3000 level – Asian Studies or from the following list:
ARCH2050 Archaeology of Southeast Asia
ARTH2056 Art and Architecture in Southeast Asia
ARCH3024 In the footprints of Siddartha: The Archaeology of Buddhism
CHIN1012 Modern Chinese 1A: Spoken
CHIN1013 Modern Chinese 1B: Written
CHIN1202 Continuing Chinese - Chinese Extension
CHIN2022 Modern Chinese 2A: Spoken
CHIN2023 Modern Chinese 2B: Written
CHIN3022 Modern Chinese 5
CHIN3023 Modern Chinese 6
CHIN3024 Modern Chinese 7
CHIN3025 Modern Chinese 8
CHIN3035 Readings in Chinese History
CHIN3041 Case Studies in Translation: Chinese/English
CHIN3201 Cantonese A
CHIN3202 Cantonese B
CHIN3203 Cantonese C
CHIN3211 Advanced Readings in Chinese A
CHIN3212 Advanced Readings in Chinese B
CHIN3216 Chinese English Interpreting
ENVS2005 Island Sustainable Development: Fiji Field School
ENVS2017 Vietnam Field School
GEND2031 Cinema in South East Asia: Genre and Cultural Identities
INTR2012 China's New Approaches to Asia Pacific Security
INTR2014 Indian Foreign & Security Policy
INTR2016 US Security Policy in Asia
INTR2018 Japan's Security Dilemmas
INTR2020 Security and Stability on the Korean Peninsula
INTR2024 Nuclear Politics in Asia
INTR2028 Southeast Asia - ASEAN & Regional Order
JPNS2024 Japanese Grammar and Expressions
JPNS3012 Teaching Japanese: Content
JPNS3023 Advanced Readings in Japanese History
JPNS3102 Debating Japan: Contemporary Intellectual Debates
KORE1020 Modern Korean 1
KORE1021 Modern Korean 2
KORE2521 Modern Korean 3
KORE2522 Modern Korean 4
KORE3012 Modern Korean 5
KORE3013 Modern Korean 6
LING1001 Introduction to the Study of Language
LING2003 Introduction to Syntax
LING2005 Language Change and Linguistic Reconstruction
LING2007 Morphology
LING2010 Phonetics: Sounds of the World's Languages - Later Year
LING2028 Japanese Linguistics
LING3012 Field Methods
LING3030 Austronesian languages
LING3031 Papuan Languages
LING3032 Advanced Forensic Linguistics
LING3013 Issues in Advanced Japanese Linguistics
LING6009 Field Methods
PASI2002 Australia in Oceania in the 19th and 20th centuries
PASI2006 War in the Islands: The Second World War in the Pacific
PASI3003 Oceanic Encounters: Gender and Sexuality in the Pacific
POLS2070 Politics in Central Asia
SKRT3002 Sanskrit 4A
SKRT3003 Sanskrit 4B
SOCY2022 Environmental Sociology and History
SOCY2061 Contemporary Chinese Society
STST2003 Securing Australia's Asia-Pacific Arch of Instability
STST3002 Australia's Security in the Asian Century
TIBN1002 Tibetan 1A
TIBN1003 Tibetan 1B
6 units from the completion of 3000-level courses from the subject area ASIA – Asian Studies
12 units from the completion of courses from any courses or subject areas listed
24 units from completion of elective courses offered by ANU
Majors
Bachelor of Asian Studies Majors
Minors
Bachelor of Asian Studies Minors
Study Options
Year 1 | COMP1130 Introduction to Programming and Algorithms (Advanced) 6 units | COMP2300 Introduction to Computer Systems 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units | |
COMP1140 Introduction to Software Systems (Advanced) 6 units | COMP2600 Formal Methods in Software Engineering 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units | ||
Year 2 | COMP2100 Software Construction 6 units | COMP2550 Advanced Computing R&D Methods 6 units | STAT1003 Statistical Techniques 6 units | |
COMP2130 Software Analysis and Design 6 units | COMP2310 Concurrent and Distributed Systems 6 units | COMP2560 Studies in Advanced Computing R&D 6 units | ||
Year 3 | COMP3120 Managing Software Development 6 units | COMP3530 Systems Engineering for Software Engineers 6 units | ||
COMP3600 Algorithms 6 units | MGMT3027 Entrepreneurship and Innovation 6 units | |||
Year 4 | COMP3550 Advanced Computing R&D Project 6 units | COMP3630 Theory of Computation 6 units | ||
COMP3550 Advanced Computing R&D Project 6 units | COMP 3000/4000 elective 6 units | |||
Year 5 | COMP4550 Advanced Computing Research Project 12 units | COMP4550 | COMP 3000/4000 elective 6 units | |
COMP4550 Advanced Computing Research Project 12 units | COMP4550 | COMP 3000/4000 elective 6 units |
Honours
Graduation from the Bachelor of Advanced Computing (Research & Development) (Honours) program will require award at 1st class honours level: H1 80 - 100%.
Back to the Bachelor of Advanced Computing (Research and Development) (Honours) page
As a high-achieving student in the Bachelor of Advanced Computing (Research & Development) (Honours) (BAC(R&D)) degree you have chosen a unique degree. You will study to become an innovator and a future leader of the ICT revolution by undertaking research with some of the world's leading researchers. You will undertake an accelarated mode of learning, develop a strong foundation in core computer science and be provided with the tools to develop the next generation of computing applications.
The BAC can be taken as a single degree which inlcudes a number of core and compulsory courses. The single degree also offers 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a Computing major, minor, or specialisation), or from other university courses.
The BAC(R&D) can also be taken as a part of many double degrees. You may not be able to complete a major in a computing discipline but a minor might be possible. You will be able to specialise in other areas as part of the ‘other half’ of your double degree.Single degree
- This degree requires 192 units (each course is typically 6 units)
- Typically you will study four courses per semester (total of 24 units)
- You will complete a Research and Development major (48 units)
- 36 units of electives (six courses). These courses may be used to study another computing major (48 units) or specialisation (24 units), or may be taken from other areas of the university.
Double degree
- This degree requires 144 units (each course is typically 6 units)
- Typically you will study four courses per semester (total of 24 units)
- You will complete a Research and Development major (48 units)
- There are no university electives in the double degree
- You can find your double degree with BAC(R&D) from Program and Courses
About this degree
- Typically you will study 4 courses per semester (total of 24 units) as a
full time student giving you a total of 24 courses across your whole
degree.
- The degree comprises compulsory requirements, additional computing electives, research and development projects, internship and electives in the single degree.
- There are no electives in the double degree but you still may be able to study a computing specialisation (24 units).
- In your first year in the double degree, MATH1115 and MATH1116 must be taken as part of the other half of your degree unless otherwise specified.
Enrolment Status
While it is possible to enrol in fewer courses per semester, which is
called studying part-time, it will take you longer to finish your
program and get your degree. If you are an international study you must
always be full-time.
Important things to keep in mind when choosing your 1000-level courses
- IF YOU ARE COMMENCING IN JULY YOU SHOULD SEND AN EMAIL TO <studentadmin.cecs@anu.edu.au> FOR ADVICE ABOUT YOUR ENROLMENT OR YOU SHOULD ATTEND AN ENROLMENT ADVICE SESSION AT THE UNIVERSITY IN THE WEEK BEFORE SEMESTER COMMENCES.
- As the BAC(R&D) is an advanced degree, you will study both first and second year courses in your first year. First year courses are typically '1000-level' courses ie start with '1' while second year courses typically start with '2'.
- Students doing double degrees with business degrees do STAT1008 in place of STAT1003 and take an additional Computing elective.
- You need to enrol in courses for both First Semester and Second Semester
- You can't study more than four courses (24 units) per semester, eight for the year
- You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC(R&D) half of the double degree.
Majors and Minors
See available majors and minors for this program
The Research & Development major is a compulsory requirement of both the single and double degrees. You may be able to study a computing major (48 units) or minor/specialisation (24 units) in the single degree. The ATTACHED DOCUMENT has more information about first year courses that are suitable for the majors.
It is not possible to complete a computing major (apart from the R&D major) in a double degree but a specilisation is possible. You do not need to make decisions about minors/specialisations until later in your degree.
Electives
If you are in the single degree, you will have just one university elective to choose. This is in your second semester.
To find
1000-level courses, use the CATALOGUE SEARCH
Suggested electives in your first year can be found in the pdf document that is an attachment in the above section about Majors and Minors.
Some popular choices for electives include: INFS1001, COMP1720, COMP2400. You can use the catalogue search function to find descriptions of these.Study Options
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Introduction to Programming and Algorithms (Advanced) 6 units | COMP2300 Introduction to Computer Systems 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units | STAT1003 Statistical Techniques 6 units |
COMP1140 Introduction to Software Systems (Advanced) 6 units | COMP2600 Formal Methods in Software Engineering 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units | Elective course 6 units |
Bachelor of Advanced Computing (Research & Development) (Honours)
Study Options
Year 1 48 units | COMP1130 Introduction to Programming and Algorithms (Advanced) 6 units | COMP2300 Introduction to Computer Systems 6 units | MATH1115 Advanced Mathematics and Applications 1 6 units | Other Degree course |
COMP1140 Introduction to Software Systems (Advanced) 6 units | COMP2600 Formal Methods in Software Engineering 6 units | MATH1116 Advanced Mathematics and Applications 2 6 units | Other Degree course |
Academic Advice
For assistance, please email: studentadmin.cecs@anu.edu.au
Back to the Bachelor of Asian Studies page
A single three year undergraduate degree offered by the ANU College of Asia and the Pacific Australia
is increasingly looking to Asia - strategically, economically,
politically, and culturally - and all eyes are on the graduates of
tomorrow to take us there. Watch our video to find out how this degree will prepare you for a successful career in the Asian Century. With
a Bachelor of Asian Studies you will master an Asian language, acquire
in-depth contextual knowledge, and graduate with the kind of Asian
literacy that gets you noticed by employers. And if you love adventure, we offer you a variety of study opportunities in the region so you can experience Asia first hand. Plus we'll provide you with funding to help get you there.
Single degree
Three years full time (144 units)
Four Courses per semester
A maximum of 60 units of 1000 level courses
12 units of compulsory courses
24 units from the designated language core courses
12 units of discipline core courses
6 units of regional core courses
6 units of 3000 level ASIA coded courses
12 units of additional courses from any of the above mentioned lists
72 units of elective courses from the College of Asia and the Pacific and/or from another ANU College
Double degree
This degree requires 96 units
A maximum of 36 units of 1000 level courses
12 units of compulsory courses
24 units from the designated language core courses
12 units of discipline core courses
6 units of regional core courses
6 units of 3000 level ASIA coded courses
12 units of additional courses from any of the above mentioned lists
24 units of elective courses from the College of Asia and the Pacific and/or from another ANU College
Enrolment Status
While it's possible to enrol in fewer courses per semester, which is called studying part-time, it will take you longer to finish your program and get your degree. If you are an international student you must always be full-time.
Important things to keep in mind when choosing your 1000-level courses
When you enrol for the first time you will study ‘1000-level’ courses. These courses have ‘1’ as the first number in their course code, such as ASIA1234.
You need to enrol in courses for both First Semester and Second Semester. You can’t study more than four courses (24 units) per semester, eight for the year. You need to enrol in courses to meet the requirements of the program, including ASIA1025, ASIA1030, courses for the language requirement and electives. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree program.
Majors and Minors
See available majors and minors for this program
While you only need to enrol in courses to complete the requirements of your degree, you can use your core and compulsory courses to enrol in 1000-level courses for a major or minor. That way you keep your options open. Once you've selected courses for a major, and/or a minor or second major, you should choose electives to make up the balance of your courses.
Electives
While you only need to enrol in courses to complete the requirements of your degree, you can use your elective courses to enrol in 1000-level courses for a major
or minor. That way you keep your options open. Once you've selected
courses for a major, and/or a minor or second major, you should choose
electives to make up the balance of your courses.
To find 1000-level
courses, use the catalogue finder. Remember you can choose up to 8
courses from another ANU College at the University if you are
undertaking the single Bachelor of Asian Studies program.
Study Options
Bachelor of Asian Studies Single Degree Study Plan
Study Options
Year 1 48 units | ASIA1025 Culture and Society in Asia 6 units | Language Course 6 units | Elective 6 units | Elective 6 units |
ASIA1030 Lives in Motion: The Politics of Culture and Everyday Experience in Postcolonial Asia 6 units | Language Course 6 units | Elective 6 units | Elective 6 units |
Bachelor of Asian Studies Double Degree Study Plan
Study Options
Year 1 48 units | ASIA1025 Culture and Society in Asia 6 units | Language Course 6 units | Course from other Degree 6 units | Course from other Degree 6 units |
ASIA1030 Lives in Motion: The Politics of Culture and Everyday Experience in Postcolonial Asia 6 units | Language Course 6 units | Course from other Degree 6 units | Course from other Degree 6 units |