• Length 5 years full-time
  • Minimum 240 Units
Admission requirements
  • Academic plan AACRD / BARTS
  • CRICOS code 079094C
  • UAC code 135010

If you want to explore the cutting edge of research in computing and gain skills that will enable you to development software that tackles complex problems then you are looking at the right degree.

This is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology revolution. It also is a great pathway to a PhD.

As a degree accredited by the Australian Computer Society you will not only learn advanced computing techniques and have the opportunity to complete a unique specialisation, but also develop exceptional professional skills including communication and teamwork.

You’ll work alongside distinguished researchers at ANU and pursue research projects in your own area of interest.

While some of our students are developing code which controls unmanned aerial vehicles, others are busy writing algorithms to mine through Petabytes of data.  If mastering challenging projects is your thing, the ANU Bachelor of Advanced Computing (Research and Development) can launch you into a spectacular career

The Bachelor of Arts is the most diverse, most flexible, and most popular degree at The Australian National University. Each of its some fifty majors, in fields throughout the arts, humanities and social sciences, is taught by truly outstanding scholars to ensure that each student receives the very best education, is engaged with cutting-edge research, and learns to think like a researcher. These majors can be coupled with more than seventy minors and specialisations to broaden or deepen your study. Regardless of your choices, your Arts degree will provide you with core skills in critical analysis and in written and oral communication, while developing your adaptability and ability to help shape change and prepare you for a multifaceted career or further study.

Career Options

Graduates from ANU have been rated as Australia's most employable graduates and among the most sought after by employers worldwide.

The latest Global Employability University Ranking, published by the Times Higher Education, rated ANU as Australia's top university for getting a job for the fourth year in a row.

Employment Opportunities

Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.

They can work across a range of industries in a variety of roles. Examples include:

  • Data Mining Specialist
  • Big Data Analyst
  • Human-Computer Interaction Specialist,
  • Software Developer
  • Embedded systems developer
  • Network Architect
  • Systems Analyst
  • Computer Engineer
  • Advanced Software Solutions Engineer
  • Software Architect

Our graduates work in many organisations including:

  • IBM
  • Google
  • Microsoft
  • Yahoo
  • Intel
  • Price Waterhouse Coopers
  • Accenture Australia
  • Bloomberg
  • National Australia Bank
  • Citigroup
  • Deloitte
  • Unisys
  • Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)

Innovative solutions come to those working in R&D. Graduates can choose to work in ICT R&D in the public or private sector, and in academia.

They can work across a range of industries in a variety of roles. Examples include:

  • Data Mining Specialist
  • Big Data Analyst
  • Human-Computer Interaction Specialist,
  • Software Developer
  • Embedded systems developer
  • Network Architect
  • Systems Analyst
  • Computer Engineer
  • Advanced Software Solutions Engineer
  • Software Architect

Our graduates work in many organisations including:

  • IBM
  • Google
  • Microsoft
  • Yahoo
  • Intel
  • Price Waterhouse Coopers
  • Accenture Australia
  • Bloomberg
  • National Australia Bank
  • Citigroup
  • Deloitte
  • Unisys
  • Australian Government (Australian Taxation Office, Reserve Bank of Australia, Department of Broadband, Communication and the Digital Economy, etc.)

Learning Outcomes

  1. Define and analyse complex problems, and design, implement and evaluate solutions that demonstrate an understanding of the systems context in which software is developed and operated including economic, social, historical, sustainability and ethical aspects

  2. Demonstrate an operational and theoretical understanding of the foundations of computer science including programming, algorithms, logic, architectures and data structures

  3. Recognise connections and recurring themes, including abstraction and complexity, across the discipline

  4. Adapt to new environments and technologies, and to innovate

  5. Demonstrate an understanding of deep knowledge in at least one area of computer science

  6. Communicate complex concepts effectively with diverse audiences using a range of modalities

  7. Work effectively within teams in order to achieve a common goal

  8. Demonstrate commitment to professional conduct and development that recognises the social, legal and ethical implications of their work, to work independently, and self- and peer-assess performance

  9.  Demonstrate a deep understanding of the fundamentals of research methodologies, including defining research problems, background reading and literature review, designing experiments, and effectively communicating results

  10. Proficiently apply research methods to the solution of contemporary research problems in computer science, and

  11.  Demonstrate an understanding of research processes including research proposals, article reviewing and ethics clearance.

  1. critically apply theoretical frameworks and research techniques to understanding national and international issues and problems;
  2. identify, including through interrogation of databases, relevant sources of information from across a variety of media (print and digital, written and audio-visual) and judge the importance and reliability of those sources;
  3. evaluate ideas and develop creative solutions to problems, including through independent pursuit of knowledge and making connections between different disciplinary approaches and methods;
  4. communicate and debate both orally and in writing, and work with others, using a variety of media; and
  5. understand the ethical implications of ideas, communications, and actions.

Further Information

The Bachelor of Advanced Computing (Research & Development) is a four year program that is accredited by the Australian Computing Society. The program has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.

A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.


Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program which also has many research and development opportunities.


A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline


Program Transfers

Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally students would need to transfer into the program before the end of their second year.

Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College. Visit the College of Engineering and Computer Science website.

The Bachelor of Advanced Computing (Research & Development) is a four year program that is accredited by the Australian Computing Society. The program has been specifically designed to provide exceptional students with early experience in undertaking research and or development. The program combines a strong foundation in computer science and mathematics, a specialty advanced computing curricula unique to the ANU, and a project based, research intensive course of study, also unique to the ANU. It provides ample scope for the student to pursue research in individual areas of interest, working with researchers of international distinction in the areas of computer science, engineering and mathematics.

A graduate of the program will have a solid grounding in the fundamentals of computing and relevant mathematics, expertise in the software development process, technical knowledge in a selection of contemporary and advanced ICT topics, and a solid experience in research methods in the ICT area.


Students are required to maintain high grades to remain and complete this program. Students who are unable to maintain these grades may transfer into the Bachelor of Advanced Computing (Honours) degree program which also has many research and development opportunities.


A graduate of the program will have the skills, knowledge and capability to go onto advanced research programs in Computer Science and related areas, and have the potential to become innovators and leaders in the Information Communication Technology (ICT) discipline


Program Transfers

Current students wishing to transfer into the Bachelor of Advanced Computing (Research & Development) are required to achieve at least an 80% average in the university courses they have completed and be deemed suitable by an interview with the program convenor. Generally students would need to transfer into the program before the end of their second year.

Learn more about the degrees offered at the ANU College of Engineering and Computer Science, read current student profiles to see what campus life is really like, and discover what our graduates have achieved since leaving the College. Visit the College of Engineering and Computer Science website.

Admission Requirements

ATAR:
99
QLD Band:
1
International Baccalaureate:
42

Pathways

Bachelor of Advanced Computing (Honours) might be a pathway for students who meet the Maths pre-requisites but do not have the required score for direct entry into this program.

Eligible students should enrol into Bachelor of Advanced Computing (Honours) and if they can maintain a High Distinction average in their first year, they may be approved to transfer into the R&D program in their second year.

Prerequisites

ACT: Specialist Mathematics (Major/Minor)/Specialist Methods(Major/Minor), NSW: Mathematics Extension 1. More information about interstate subject equivalencies can be found here.

Students who successfully complete the below program will be admitted to the Bachelor of Arts:

ELIBS Diploma of Liberal Studies (offered by the ANU College of Arts and Social Sciences)

 

Adjustment Factors

ANU offers rank adjustments for a number of adjustment factors, including for high achievement in nationally strategic senior secondary subjects and for recognition of difficult circumstances that students face in their studies. Rank adjustments are applied to Bachelor degree applicants with an ATAR at or above 70. Points are awarded in accordance with the approved schedules, and no more than 15 points (maximum 5 subject/performance-based adjustments, maximum 10 equity-based adjustments and maximum 5 Elite Athlete adjustments) will be awarded. Please note that Adjustment Factors vary and do not apply to a select few programs,  please visit the ANU Adjustment Factors website for further information.

Bachelor of Advanced Computing (Research and Development) (Honours) - Commonwealth Supported Place (CSP)

Bachelor of Arts - Commonwealth Supported Place (CSP)

For more information see: http://www.anu.edu.au/students/program-administration/costs-fees

Annual indicative fee for international students
$46,080.00

Scholarships

ANU offers a wide range of scholarships to students to assist with the cost of their studies.

Eligibility to apply for ANU scholarships varies depending on the specifics of the scholarship and can be categorised by the type of student you are.  Specific scholarship application process information is included in the relevant scholarship listing.

For further information see the Scholarships website.

Program Requirements

This double degree requires the completion of 240 units.

The Bachelor of Advanced Computing (Research and Development) (Honours) flexible double degree component requires completion of 144 units, of which:

 

A maximum of 60 units may come from completion of 1000-level courses

12 units count towards the requirements of the other double degree component

 

The 144 units must include:

84 units from completion of compulsory courses from the following list:

COMP1130 Programming as Problem Solving (Advanced)

COMP1140 Structured Programming (Advanced)

COMP1600 Foundations of Computing

COMP2100 Software Design Methodologies

COMP2120 Software Engineering

COMP2300 Computer Organisation and Program Execution

COMP2310 Systems, Networks and Concurrency

COMP2420 Introduction to Data Management, Analysis and Security

COMP2550 Advanced Computing R&D Methods

COMP2560 Studies in Advanced Computing R&D

COMP3600 Algorithms

COMP3770 Individual Research Project (12 units)

MATH1005 Discrete Mathematical Models

 

6 units from completion of course from the following list:

MATH1013 Mathematics and Applications 1

MATH1115 Advanced Mathematics and Applications 1

 

6 units from completion of course from the following list:

MATH1014 Mathematics and Applications 2

MATH1116 Advanced Mathematics and Applications 2

STAT1003 Statistical Techniques

STAT1008 Quantitative Research Methods

 

24 units from completion of one of the following specialisations:

Machine Learning

Artificial Intelligence

Systems and Architecture

Theoretical Computer Science

 

24 units from completion of COMP4550 Advanced Computing Research Project

The Bachelor of Arts flexible double degree component requires completion of 96 units, of which:

A maximum of 36 units may come from completion of 1000-level courses

The 96 units must consist of:

48 units from the completion of one Arts major from any of the following lists:

Disciplines and Fields

Ancient History

Anthropology

Archaeology

Art History and Theory

Australian Indigenous Studies

Biological Anthropology

Criminology

Demography

Development Studies

Digital Humanities

Economic Studies

English

Environmental Studies

Gender, Sexuality and Culture

Geography

Global Security

History

Human Evolutionary Biology

Human Rights

International Communication

International Relations

Linguistics

Mathematics

Music

Music Technology

Peace and Conflict Studies

Philosophy

Political Science

Psychology

Screen Studies

Sociology

Technology, Networks and Society

War Studies

Languages

Ancient Greek

Arabic

Chinese Language

French Language and Culture

German Language and Culture

Hindi Language

Indonesian Language

Italian Language and Culture

Japanese Language

Japanese Linguistics

Korean Language

Latin

Persian

Sanskrit Language

Spanish

Thai Language

Vietnamese Language

Geographically Defined Area Studies

Asian Studies

Asian History

Asia and Pacific Culture, Media and Gender

Chinese Studies

Contemporary Europe

India Studies

Indonesian Studies

Japanese Studies

Korean Studies

Latin American Studies

Middle Eastern and Central Asian Studies

Northeast Asian Studies

Pacific Studies

Southeast Asian Studies

Either:

24 units from the completion of one Arts minor, which must have a different name to the Major on any of the following lists:

Disciplines and Fields

Advanced Studies

Ancient History

Anthropology

ANU Leadership and Research

Applied Linguistics

Archaeology

Art History and Theory

Australian Indigenous Studies

Biological Anthropology

Climate Science and Policy

Criminology

Demography

Design

Development Studies

Digital Humanities

Economic Studies

English

Environmental Policy

Environmental Studies

Forensic Anthropology

Forensic Linguistics

Gender and Sexuality

Geography

Global Security

Health, Medicine and the Body

Heritage and Museum Studies

History

Human Ecology

Human Evolutionary Biology

Human Rights

International Communication

International Relations

Linguistics

Mathematics

Music

Music Technology

Peace and Conflict Studies

Philosophy and Science

Philosophy

Political Science

Popular Music

Screen Studies

Social Psychology

Social Research Methods

Sociology

Sustainable Development

Technology, Networks and Society

Visual Arts Practice

War Studies

Languages

Advanced Ancient Greek

Advanced Arabic

Advanced Chinese Language

Advanced English Language

Advanced French Studies

Advanced German Studies

Advanced Hispanic Culture

Advanced Hispanic Linguistics

Advanced Italian Studies

Advanced Japanese Language

Advanced Korean Language

Advanced Latin

Advanced Persian

Advanced Sanskrit Language

Advanced Spanish Studies

Ancient Greek

Arabic

Burmese Language 

Chinese Language 

French Language and Culture

German Language and Culture

Hindi Language

Indonesian Language

Italian Language and Culture

Japanese Language

Japanese Linguistics

Korean Language

Latin

Literary Chinese

Mongolian Language

Persian

Russian

Sanskrit Language

Spanish

Tetum Language

Thai Language

Tok Pisin Language

Vietnamese Language

Geographically Defined Area Studies

American Studies

Asian and Pacific Anthropology

Asian and Pacific Linguistics 

Asian Art History

Asian History

Asian Studies

Asia and Pacific Archaeology

Asia and Pacific Culture, Media and Gender

Asia-Pacific International Relations

Asia and Pacific Literature and Film

Asia-Pacific Politics

Australian Politics

Chinese Studies

Contemporary Europe

India Studies

Indonesian Studies

Japanese Studies

Korean Studies

Latin American Studies

Middle Eastern and Central Asian Studies

Northeast Asian Studies

Pacific Studies

Southeast Asian Studies

24 units from completion of courses listed in any Arts major, minor and the following list:

 

Or:

24 units from completion of ANIP3007 Australian National Internships Program D

ESEN1101 Essential University English

24 units from completion of courses listed in any Arts major, minor and the following list:

ESEN1101 Essential University English

Or:

48 units from completion of a second Arts major

 

 

Majors

Bachelor of Advanced Computing (Research and Development) (Honours) Majors

Bachelor of Arts Majors

Minors

Bachelor of Arts Minors

Bachelor of Advanced Computing (Research and Development) (Honours) Minors

Specialisations

Bachelor of Advanced Computing (Research and Development) (Honours) Specialisations

Study Options

Year 1 COMP1130 Programming as Problem Solving (Advanced) 6 units MATH1005 Discrete Mathematical Models 6 units MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013;
COMP1140 Structured Programming (Advanced) 6 units COMP1600 Foundations of Computing 6 units MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014;
Year 2 COMP2100 Software Design Methodologies 6 units COMP2550 Advanced Computing R&D Methods 6 units COMP2300 Computer Organisation and Program Execution 6 units
COMP2120 Software Engineering 6 units COMP2310 Systems, Networks and Concurrency 6 units COMP2560 Studies in Advanced Computing R&D 6 units
Year 3 COMP2420 Introduction to Data Management, Analysis and Security 6 units Computing Research Specialisation 6 units
COMP3600 Algorithms 6 units Computing Research Specialisation 6 units
Year 4 COMP3770 Individual Research Project 6 units Computing Research Specialisation 6 units
COMP3770 Individual Research Project 6 units Computing Research Specialisation 6 units
Year 5 COMP4550 Advanced Computing Research Project 12 units COMP4550
COMP4550 Advanced Computing Research Project 12 units COMP4550

Back to the Bachelor of Advanced Computing (Research and Development) (Honours) page

As a high-achieving student in the Bachelor of Advanced Computing (Research & Development) (Honours)  (BAC(R&D)) degree you have chosen a unique degree. You will study to become an innovator and a future leader of the ICT revolution by undertaking research with some of the world's leading researchers.  You will undertake an accelarated mode of learning, develop a strong foundation in core computer science and be provided with the tools to develop the next generation of computing applications.

The BAC can be taken as a single degree which inlcudes a number of core and compulsory courses. The single degree also offers 48 units (eight courses) of electives that can be taken from additional computing courses (enabling you to complete a Computing major, minor, or specialisation), or from other university courses.

The BAC(R&D) can also be taken as a part of many double degrees. You may not be able to complete a major in a computing discipline but a minor might be possible. You will be able to specialise in other areas as part of the ‘other half’ of your double degree.

Single degree

  • This degree requires 192 units (each course is typically 6 units)
  • Typically you will study four courses per semester (total of 24 units)

Double degree

  • This degree requires 144 units (each course is typically 6 units)
  • Typically you will study four courses per semester (total of 24 units)
  • You will complete a Research and Development major (48 units)
  • There are no university electives in the double degree
  • You can find your double degree with BAC(R&D) from Program and Courses


About this degree

  • Typically you will study 4 courses per semester (total of 24 units) as a full time student giving you a total of 24 courses across your whole degree.
  • The degree comprises compulsory requirements, additional computing electives, research and development projects, internship and electives in the single degree.
  • There are no electives in the double degree but you still may be able to study a computing specialisation (24 units).
  • In your first year in the double degree, MATH1115 and MATH1116 must be taken as part of the other half of your degree unless otherwise specified.

Enrolment Status

While it is possible to enrol in fewer courses per semester, which is called studying part-time, it will take you longer to finish your program and get your degree. If you are an international study you must always be full-time.

Important things to keep in mind when choosing your 1000-level courses

  • IF YOU ARE COMMENCING IN JULY YOU SHOULD SEND AN EMAIL TO <studentadmin.cecs@anu.edu.au> FOR ADVICE ABOUT YOUR ENROLMENT OR YOU SHOULD ATTEND AN ENROLMENT ADVICE SESSION AT THE UNIVERSITY IN THE WEEK BEFORE SEMESTER COMMENCES.

  • As the BAC(R&D) is an advanced degree, you will study both first and second year courses in your first year. First year courses are typically '1000-level' courses ie start with '1' while second year courses typically start with '2'. 
  • Students doing double degrees with business degrees do STAT1008 in place of STAT1003 and take an additional Computing elective.
  • You need to enrol in courses for both First Semester and Second Semester
  • You can't study more than four courses (24 units) per semester, eight for the year
  • You may take 1000-level courses later in your program. But remember you can’t count more than ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your BAC(R&D) half of the double degree.



Study Options

Bachelor of Advanced Computing (Research & Development) (Honours)

Study Options

Year 1 48 units COMP1130 Programming as Problem Solving (Advanced) 6 units MATH1005 Discrete Mathematical Models 6 units MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; University Elective
COMP1140 Structured Programming (Advanced) 6 units COMP1600 Foundations of Computing 6 units MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; University Elective

Bachelor of Advanced Computing (Research & Development) (Honours)

Study Options

Year 1 48 units COMP1130 Programming as Problem Solving (Advanced) 6 units MATH1005 Discrete Mathematical Models 6 units MATH1115 Advanced Mathematics and Applications 1 6 units OR MATH1013; Other Degree course
COMP1140 Structured Programming (Advanced) 6 units COMP1600 Foundations of Computing 6 units MATH1116 Advanced Mathematics and Applications 2 6 units OR MATH1014; Other Degree course

Academic Advice

For assistance, please email: studentadmin.cecs@anu.edu.au

Single degree

This following information is to be read in conjunction with the program rules that are outlined on the “Study” tab.   Please always make sure that you refer to the program rules for the year that you commenced your program.

Bachelor of Arts consists of 144 units. Most courses are worth 6 units each, with 48 units (8 courses) per year being the standard full-time load.

A course (usually 6 units) can only be counted towards one list such as in a major or minor or designated list. For example, you are not permitted to count POLS1005 towards the International Relations Major and the Human Rights Major.

For the Bachelor of Arts you will need to complete:

  • One Arts major from the designated list (48 units)
  • One Arts minor and four courses from any Arts major, minor or the designated list (48 units)
    or
    An Internship and four courses from any Arts major, minor or the designated list (48 units)
    or
    A second Arts major (48 units)
  • Eight electives from across the ANU (48 units)

Please note that you are only permitted to count ten 1000-level courses (60 units) towards your program.

You are advised to complete a Program Plan for the Bachelor of Arts. This will help you seek advice on your course choices, ensure you meet the program requirements and give you a plan that you can refer to for the duration of your program.

Double degree

This following information is to be read in conjunction with the program rules that are outlined on the “Study” tab.   Please always make sure that you refer to the program rules for the year that you commenced your program.

Bachelor of Arts Double Degree program consists of 96 units. Most courses are worth 6 units each, with 48 units (8 courses) per year being the standard full-time load. During each semester you are likely to take two courses from your Bachelor of Arts degree and another two courses from the other half of your double degree – making up a total of four courses per semester.

A course (usually 6 units) can only be counted towards one list such as in a major or minor or designated list. For example, you are not permitted to count POLS1005 towards the International Relations Major and the Human Rights Major.

You will need to complete:

  • One Arts major from the designated list (48 units)
  • One Arts minor and four courses from any Arts major, minor or the designated list (48 units)
    or
    An Internship and four courses from any Arts major, minor or the designated list (48 units)
    or
    A second Arts major (48 units)

Please note that you are only permitted to count six 1000-level courses (36 units) towards your degree.

You are advised to complete a Program Plan for the Bachelor of Arts. This will help you seek advice on your course choices, ensure you meet the program requirements and give you a plan that you can refer to for the duration of your program.

Enrolment Status

While it is possible for domestic students to enrol in fewer than four courses per semester, which is called studying part-time, it will take you longer to finish your program and get your degree. If you are an international student you must always be full-time.

First year students are not permitted to study more than four courses (24 units) per semester.

If you are beginning your program in Semester 1, you should enrol for all your courses for both Semester 1 and Semester 2 (8 courses for full time), so that you can plan your study year.




Important things to keep in mind when choosing your 1000-level courses

When you enrol for the first time you will study ‘1000-level’ courses. These courses have ‘1’ as the first number in their course code, such as ARTS1234. Whilst it is important to take 1000-level courses in your first year (so that you can meet the pre-requisites for later year courses) they also can be taken later in your program.

You can only count a maximum of ten 1000-level courses (60 units) towards your single degree or six 1000-level courses (36 units) towards your Bachelor of Arts half of the double degree.

In your first year you need to enrol in:

  • 1000-level courses from your Arts major
  • 1000-level courses from your Arts minor or second Arts major
  • Elective courses for students undertaking the single degree.

Electives

For students in the single degree, your electives (48 units from completion of elective courses offered by ANU) can be additional courses from your discipline (including the option of a major or minor) or courses from another ANU College. If you have an interest in another discipline, for example management, psychology or mathematics, then you should explore first year courses in your area of interest. In particular look at the majors and minors. These will give you an idea of the first year courses you can study.

If you are interested in undertaking a language and have prior knowledge/experience with that language you may need to undertake a placement test – you should check with the relevant language area for further details.




Study Options

Study Plan

Please refer to the "Study" tab.

Study Options

Year 1 48 units - - - -
- - - -

Study Plan

Please refer to the "Study" tab.

Study Options

Year 1 48 units - - - -
- - - -
Back to the top

Responsible Officer: Registrar, Student Administration / Page Contact: Website Administrator / Frequently Asked Questions